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GRAPHICAL ABSTRACT 
 

 
 

 

1. Introduction 

Globally, the use of contaminants in solvents, personal care, pesticides, and 

pharmaceuticals has emerged and has rapidly increased from 1 million to 500 

million tons per year (Khan et al., 2022). These emerging contaminants (ECs) 

are harmful to the environment and human health, with current research 

addressing wastewater treatment methods to remove ECs (Qalyoubi et al., 

2022). Currently, microplastics and endocrine materials for example impose a 

threat on human health (Abuwatfa et al., 2021, Al Sharabati et al., 2021). The 

Middle East has the highest volume of plastics that enter the seas per person 
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HIGHLIGHTS 

➢ Membrane processes are effective in the removal of 

emerging contaminants. 

➢ Membrane processes pose a challenge during operation 

because of fouling. 

➢ Various AI models can be employed to optimize and predict 

fouling. 
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Water contamination is a global issue due to the emergence of new contaminants from solvents, personal care products, and pharmaceutical compounds. Membrane 
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artificial intelligence (AI) models can be employed to optimize the input parameters based on the output, which helps in predicting membrane performance and assessing 

its ability to reject contaminants effectively. The possibilities for improvement in membrane technologies and filtration processes using AI techniques are discussed in this 

paper. Membrane fouling causes significant issues during the operation due to the accumulation of impurities onto the membrane, which reduces the membrane’s ability to 

function properly. AI algorithms can be used to predict permeate flux and fouling growth properties. The paper concludes that AI utilization for the prediction of membrane 

fouling can enhance the membrane selection for the processes, reduce costs with better fouling control system development and make the process more scalable on an 

industrial scale. The literature showed that there are models, such as the Neural-fuzzy interference system, that can predict forward osmosis membranes’ performance with 

a high correlation of 0.997 and a root mean square error of 0.04. The paper also concludes that the exploration of more novel deep learning architectures like GANs would 

facilitate better resource recovery from wastewater and improved prediction of fouling in membrane processes. 
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compared to the other world regions (Heger et al., 2022). Furthermore, there 

have only been 70 publications since 2012 that have addressed the problem of 

ECs and wastewater treatment across 21 countries in the Middle East and North 

Africa region (Ouda et al., 2021). This discrepancy in levels of wastewater 

pollution and limited research in the Middle East and North Africa region 

shows the severity of the problem in the Middle East. Even though there have 

been recent steps and initiatives in gulf countries that have initiated and 

implemented systems to detect contaminants and process waterway systems 

(Al-Rajab et al., 2019, Ali et al., 2017, Ouda et al., 2021). Although, these 

systems have not been adequately developed in the Middle East and North 

Africa region to treat ECs (Sarkar et al., 2019). Therefore, it is crucial to 

investigate the different removal techniques to reduce the levels of ECs in 

waterway systems. 

Currently, there are several main removal techniques that reduce ECs, which 

include photocatalytic degradation, advanced oxidation, adsorption, and 

membrane processes (Pham et al., 2020, Al-Bsoul et al., 2020, Shams Jalbani 

et al., 2021, Egea-Corbacho Lopera et al., 2019). The advantages that 

membrane technologies have against the other removal techniques include 

energy efficiency, simplicity in system design, and the ability to produce high-

quality water (Tawalbeh et al., 2023, Saleh & Gupta, 2016). These advantages 

make membrane technologies effective techniques in wastewater treatment. 

Generally, filtration is a pressure-driven separation process in which particulate 

matter is rejected by the membrane, leaving wastewater (Gupta & Ali, 2013). 

The development of proper treatment methods for wastewater led to the 

recovery of vital resources that can be used for the development of modern 

societies. There have been recent efforts in using wastewater as a renewable 

resource where energy, nutrients, and excess water are recovered and utilized 

for different applications (Pikaar et al., 2022). The use of wastewater in energy 

recovery has been also evaluated to generate electricity (Zarei, 2020, 

Toczyłowska-Mamińska & Mamiński, 2022). Various amounts of nutrients, 

such as nitrogen, ammonium, and phosphate have been recovered from water 

for example, via adsorption and struvite precipitation processes, which could 

lead to its use as fertilizers (Ye et al., 2020). The previous examples show some 

possibilities for resource recovery paths based on the water-energy nexus. 

There are four main types of membrane processes, which include 

microfiltration, ultrafiltration, nanofiltration and reverse osmosis. Figure 1 

illustrates the various pore-sizes of these membranes and their applications 

(Zahid et al., 2018). Meanwhile, Table 1 summarizes the key findings in the 

literature for each membrane process and how these findings apply to the 

removal of contaminants, including emerging contaminants. 

Meanwhile, RO membranes were able to achieve a high removal rate of 

ciprofloxacin, above the 90% as reported by Alonso et al. (Alonso et al., 2018). 

The RO membranes require pressure beyond the osmotic pressure of the feed 

solution to allow water to pass through and reject salt (Qasim et al., 2019). This 

means that the RO membranes require a high operating pressure to remove 

contaminants from wastewater (Qalyoubi et al., 2021). Meanwhile, membrane 

processes are hindered with problems, such as membrane fouling, difficulty in 

obtaining optimal parameters, selectivity, and permeability (Zhao et al., 2020, 

Tawalbeh et al., 2018). Generally, membranes have a tradeoff between 

selectivity and permeability, which must be considered depending on the 

application. Selectivity determines how far the desired molecules are separated, 

while permeability determines how fast molecules go through a membrane (H. 

B. Park et al., 2017). Another problem is that membranes have throughput, 

which is the volume of fluid that is filtered out from the membrane over time. 

Throughput is limited by the surface area of the membrane (Holdich et al., 

2020). Various techniques have been developed to deal with these problems.  

 

 

 

Figure 1. Figure 1. Membrane processes (Zahid et al., 2018). 

 

Table 1 

Key findings on membrane processes. 

 

Membrane Finding Ref. 

Microfiltration (MF) 1) The large molecular weight cut-off of MF membrane prevents the removal of some large 

contaminants. 

2) Coating the MF membrane with titanium dioxide and silver oxide will modify the main functional 

properties, such as antibacterial and photocatalytic properties. 

3) The relatively large pore size for microfiltration reduces its effectiveness in removing ECs from 

wastewater 

(Cevallos-Mendoza et al., 2022, 

Kacprzyńska-Gołacka et al., 2020) 

Ultrafiltration (UF) 1) A ceramic UF membrane had a maximum removal rate of 99% at 2.5 bar pressure. 

2) High operational stability was achieved from the combination of two processes: inline coagulation 

and powdered activated carbon to UF membranes. 

(Bhattacharya et al., 2019, Schwaller et 

al., 2021) 

Nanofiltration (NF) 1) The larger the molecular weight, the greater rejection ratios are. 

2) The NF membrane, NF90 showed the highest decrease in permeate flux. 

(Wang et al., 2015, Dogan E, 2016) 

Reverse osmosis (RO) 1) RO membrane (RE2521- SHF) had removal rates between 90 and 99% in the desalination plant. (Alonso et al., 2018, Qasim et al., 2019) 
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Meanwhile, RO membranes were able to achieve a high removal rate of 

ciprofloxacin, above the 90% as reported by Alonso et al. (Alonso et al., 2018). 

The RO membranes require pressure beyond the osmotic pressure of the feed 

solution to allow water to pass through and reject salt (Qasim et al., 2019). This 

means that the RO membranes require a high operating pressure to remove 

contaminants from wastewater (Qalyoubi et al., 2021). Meanwhile, membrane 

processes are hindered with problems, such as membrane fouling, difficulty in 

obtaining optimal parameters, selectivity, and permeability (Zhao et al., 2020, 

Tawalbeh et al., 2018). Generally, membranes have a tradeoff between 

selectivity and permeability, which must be considered depending on the 

application. Selectivity determines how far the desired molecules are separated, 

while permeability determines how fast molecules go through a membrane 

(Park et al., 2017). Another problem is that membranes have throughput, which 

is the volume of fluid that is filtered out from the membrane over time. 

Throughput is limited by the surface area of the membrane (Holdich et al., 

2020). Various techniques have been developed to deal with these problems. 

Since current classical modeling techniques fail to approach the problems 

due to the complexity of membrane processes, current research focused on 

applying AI in membrane technologies (Zhao et al., 2020). A comparison 

between two AI models over a mathematical model in predicting water 

permeability of a membrane showed how far AI models surpass mathematical 

models in accuracy and prediction (Viet & Jang, 2023). The literature reported 

the coefficient and error values of the 3 models with both the neural network 

and the neural-fuzzy interference system surpassing the conventional 

intermediate mathematical blocking model in both aspects. Table 2 presents 

values that were adapted from the literature (Viet & Jang, 2023). The study 

focused on FO membranes and was presented here as an example. Table 2 

demonstrates how AI-based models are better suited in membrane prediction 

applications. 

 

Table 2 

Table 2 Mathematical and AI models in FO membrane processes. Values from 

Viet et al. (Viet & Jang, 2023). 

 

Model Coefficient value Root mean square error 

Conventional intermediate 

blocking model (CIB) 

0.963 0.97 

Artificial neural network (NN 

model) 

0.974 0.70 

Neural-fuzzy interfence system 

(NFIS) 

0.997 0.04 

 

In the past two decades, the progress of AI has prompted its use in improving 

system performance and efficiency (Al-Othman et al., 2022). The number of 

papers published with application of AI in various fields has increased by a 

factor of 19 from 1995 to 2019 (Zhao et al., 2020). This feature allows AI to 

perform human tasks, such as analyzing and assessing data, but at a much faster 

rate. AI-based techniques surrounding the optimization and enhancement of 

membranes allow the problems of parameter optimization and membrane 

fouling to be tackled. In short, the field of AI has 6 subsets: Machine learning, 

deep learning, robotics, expert systems, fuzzy logic, natural language 

processing with machine learning, deep learning, and fuzzy logic being applied 

to membrane technologies in wastewater treatment (Modak et al., 2022). This 

occurs as AI techniques use various algorithms to extract massive data and then 

obtain patterns for prediction and classification. By applying these techniques 

to membranes, it is possible to predict membrane fouling, optimize membrane 

parameters, and to evaluate membrane performance. These results can reduce 

costs, allow more contaminants to be removed, improve water quality, and 

contribute to a better resource recovery of water, energy, and materials from 

wastewater. Even though AI techniques have been applied to deal with 

throughput, selectivity and permeability, the discussion will be limited to 

applying AI in optimizing membrane parameters and predicting membrane 

fouling in this context. As Table 3 indicates, the latest research in AI has been 

increasing and developing to very bright prospects in the application of AI in 

membrane processes. This is accomplished through the optimization of 

membrane process parameters and prediction of membrane fouling. 

This paper aims at discussing the main AI techniques used in the prediction 

of membrane processes performance and addressing another key issue faced by 

membrane processes known as membrane fouling. 

 

2. AI Applications in Membranes 

In this section, the main AI algorithms used in membranes’ parameter 

optimization are discussed. 

 

2.1 Introduction to AI Algorithms in Parameter Optimization 

The optimization of membrane filtration processes is essential to improve 

the quality of water and to remove contaminants. Since AI algorithms provide 

the most efficient way to optimize parameters, this has led numerous models to 

be developed to predict permeate flux by getting the optimum input constraints, 

such as filtration time, feed temperature, and trans-membrane pressure 

(Badrnezhad & Mirza, 2014). This methodology has been applied to predict 

water quality across varying environmental variables. Various studies have 

applied numerous machine learning models to predict dissolved oxygen 

concentration, water quality index, and biochemical oxygen demand 

(Badrnezhad & Mirza, 2014, Kisi et al., 2020, Nourani et al., 2021, Nur Adli 

Zakaria et al., 2021, Gaya et al., 2020, Arefi-Oskoui et al., 2017). Specifically, 

a study by Oskoui et al. (Arefi-Oskoui et al., 2017) used two AI models, 

artificial neural networks (ANN) and genetic algorithms (GA), to determine the 

most optimal input parameters for ultrafiltration membranes. The first model 

was an artificial neural network that has an input layer, hidden layer, and an 

output layer. The input parameters were the polymer and pore concentrations, 

which determined how these parameters affect the output. The second model 

applied the results from the ANN to a GA. This algorithm has an initial “input 

population”, which is defined as the initial input parameters that is continuously 

evaluated by fitness levels after each iteration. Fitness levels indicate how fit 

each individual set of input parameters are. A fitness score is then given to each 

individual set and the individuals that are more fit are selected to create the 

population of the next generation. The process repeats for the numerous 

generations until a suitable fitness level is reached. In this case the initial input 

parameters were used to obtain the maximum values for pure water flux, 

protein flux, and flux recovery ratio. These optimized values had an R2 value 

of 0.98, showing that the developed model was accurate. This accuracy helps 

show the effectiveness of using AI models to optimize the input parameters and 

maximize the result. 

 

2.2 Genetic Algorithm & Response Surface Methodology 

Parameter optimization can be applied in the removal of ECs, which was 

demonstrated (Yousefi et al., 2021). The study used the genetic algorithm to 

enhance the removal rate of a specific contaminant, ciprofloxacin. The study 

used deionized water and added ciprofloxacin to the feed, which was then 

filtered out through a 0.22-micron pore. The initial and final ciprofloxacin 

concentration value was determined using an ultraviolet detector. This setup 

helped in understanding the removal rate of ciprofloxacin.  Since the removal 

of ciprofloxacin depends on the pH levels, concentration of the contaminant, 

contact time, and the adsorbent dose, this forms the most optimal conditions 

required to have the highest rate of ciprofloxacin removal. The dependencies 

on the removal rate are expressed in Eq. 1 (Yousefi et al., 2021): 

Y=b0+Σbixi+ Σbiixi2 + Σbijxixj (1) 
 

where the output Y is the adsorption of ciprofloxacin that is optimized based 

on the inputs, xi and xj, which are the pH, dose (g/L), time (min), and 

ciprofloxacin concentration levels (mg/L). Meanwhile, the coefficients, b0, bi, 

bii, bij, are the constant, linear, quadratic, and interaction coefficients of the 
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inputs, which are optimized to have the highest removal rate. The GA was 

applied with Figure 2 showing that after each generation, the more fit 

individuals are selected according to its fitness value until it reaches the best 

possible fitness value. In this case, the best fitness value was reached after 130 

generations, which generated the most optimal input conditions. Figure 2 also 

shows the current best individual, which occurs after reaching the best fitness 

value and it displays the optimal input values that were attained. The y-axis of 

the current best individual graph shows the value of each input parameter. 

Overall, the most optimal input parameters had a pH of 4.4, dose of 0.74 g/L, 

time of 42 min, and ciprofloxacin concentrations of 38 mg/L, which had a 

removal rate of 99.1%. Meanwhile, the study also used a different machine 

learning algorithm, such as response surface methodology (RSM) to obtain a 

similar result. Overall, these machine learning algorithms demonstrate how 

input values can be tuned to increase the removal rate of the contaminant. 

 

Table 3 

ANN Applications in Membrane Processes Since 2017 adapted and referenced from (Niu et al., 2022). 

 

Membrane Inputs Optimized parameters Type Performance Ref. 

RO • Conductivity 

• Electrical power 

• Temperature 

• Pressure 

• Flowrate 

Multilayer perceptron • Mean absolute error: 

• Flowrate=0.84% 

• 0.405% 

(Cabrera et al., 2017) 

RO • Water quality 

• Hydraulic parameters 

• Pressure 

• Flowrate 

Multilayer perceptron R2 

• Flowrate=0.98 

• Pressure=0.87 

(Roehl et al., 2018) 

NF • pH 

• Pressure 

• Recovery 

• Contact angle 

• Zeta potential 

• Salt rejection 

• Rejection Bootstrap aggregated 

neutral network 

• R2=0.9862 (Khaouane et al., 2017) 

NF-RO hybrid • Axial images of fouling layer 

• Corresponding x coordinate 

data 

• Initial flux values 

• Membrane type 

• Time stamps for fouling onset 

• Flux 

• Fouling thickness 

Deep neural network R2: 

• Fouling thickness=0.99 

• Permeate flux=0.99 

(Park et al., 2019) 

NF • Concentration 

• Membrane 

• Solvent type 

• Flux 

• Rejection 

Multilayer perceptron R2 

• Flux=0.98 

• Rejection=0.91 

(Hu et al., 2021) 

NF • Optical coherence 

tomography images 

• Quality-based water 

parameters 

• Fouling thickness 

• Permeate flux 

Recurrent neutral 

network 

R2 

• Flux=0.9982 

• Fouling thickness=0.9987 

(Shim et al., 2021) 

UF • Feed water organic, five 

component model values and 

fluorescent components  

• pH 

• fouling resistance Multilayer perceptron MAPE<5% (Peleato et al., 2017) 

UF • Cumulative sampling volume 

• Metal to surfactant relation 

ratio 

• pH 

• Permeate flux 

• Rejection rate 

Multilayer perceptron Coefficient of 

determination=0.9974  

(Lin et al., 2017) 

 

3. Prediction of Membrane Fouling 

As expounded by Liu et al. (Liu et al., 2019), membrane fouling is a complex 

process of gradual accumulation of impurities, suspended solids, and other 

materials on the surface of the membrane. This accumulation reduces the 

performance and efficiency of the membrane over time. There are several 

known mechanisms for fouling that include: 

1. Adsorption: The adherence of solutes or colloids onto the surface of the 

membrane. 

2. Pore blocking: The physical obstruction of membrane pores by larger 

particles or suspended solids 

3. Gel formation: chemical reactions or aggregation of particles causing 

formation of a “gel-like” layer on the membrane surface 

4. Biofouling: microorganism proliferation on the membrane surface, which 

can produce biofilms that can block the pores and reduce the permeate flux. 

Being one of the major hindrances faced by membrane processes. Niu et al. 

(Niu et al., 2022) conducted a comprehensive evaluation that specifically 

examined the use of artificial neural networks (ANN) for predicting membrane 



H. Kazim et al.  Journal of Resource Recovery, January 2023, Volume 1, 1008 

 

 

fouling in membrane-based processes over the last two decades. They have 

conducted the review in modeling ANN for the following membrane processes: 

Microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), reverse osmosis 

(RO), and membrane bioreactors (MBR). 

Amongst the many available studies in the literature, it appears that certain 

authors have adopted interesting approaches that are ought to be discussed. 

Roehl et al. (Roehl et al., 2018) studied the modeling of an ANN at a multi-

effluent wastewater treatment plant that utilized a 15 staged RO system with a 

daily capacity of 284 megaliters. The ANNs were designed to fit only 

continuous monotonic functions with characterization using R2 value. They 

found that the fouling models were very effective at predicting effects of 

traditional parameters, such as turbidity, total chlorine and ammonia with total 

dissolved solids and electrical conductance being the most predictive. The 

study concluded that the guidance of ANN modeling plays a crucial role in 

better data collection for improvement and support of the said process. Another 

approach by Park et al. (S. Park et al., 2019) utilized more novel deep neural 

networks (DNN) for flux decline and fouling prediction. To mimic fouling, NE 

90 (NF) and RE SHF (RO) membranes were fouled using 10 mg C/L humic 

acid and 10 mM of Ca2+ ions and the effect of the latter was measured using 

optical coherence tomography (OCT). To develop the model, the input scans 

were pre-processed using cropping of 20%, separating the fouling layer using 

k-means clustering algorithm, and lastly the layer image is deblurred for 

recovery of original state, which is then binarized to enhance the level of detail 

regarding the fouling visible in the image. Based on a convolutional neural 

network (CNN), the model rapidly identifies critical characteristics and 

categorizes them more efficiently than traditional methods. Specifically for the 

fouling layer, within the CNN, there are convolutional layers, batch 

normalization, concatenated rectified linear units, max-pooling layers, dropout, 

and fully connected layers that form its architecture. Mean square error (MSE) 

and root mean square error (RMSE) are used to evaluate its efficiency 

contingent on both simulated and observed data. The model's output was 

contrasted with several mathematical models, including the Faridirad model 

and pore blockage cake formation model, to assess its accuracy. Fig. 3 shows a 

visual representation of the comparison results. 

The observed and predicted fouling thickness by the DNN were very close 

to one another.  On the other hand, the mathematical models were quite apart 

from the observed fouling thickness especially at the initial hours. This results 

in the DNN model having the lowest RMSE out of the 3 models. The results 

are explained by the authors in terms of the necessity of optimization and 

requirement of optimum parameters for the mathematical models with the 

Faridirad model requiring 7 parameters and the pore blockage cake formation 

model requiring 4 parameters. DNN only required the initial fouling and initial 

flux information to determine the accuracy of fouling over time. However, a 

downside to the DNN model is the long duration needed to train the model, 

which takes around 4 days. Another research by Shim et al. (Shim et al., 2021) 

proposed another form of AI, known as long short-term memory (LSTM), 

which is a recurrent neural network (RNN) that leverage its ability to remember 

a sequence of events to predict fouling. The paper utilized natural organic 

matter as the foulants, namely humic acid, bovine-serum-albumin, sodium 

alginate, and tannic acid. They considered six inputs: Initial flux, pressure, 

fouling thickness, dissolved organic carbon concentration, modified 

fluorescence regional integration, and operation time with the relevant readings 

taken using OCT images. The developed LSTM model successfully predicted 

with very high accuracy rates permeate flux (R2 > 0.98) and fouling growth (R2 

> 0.97) at any time. Fig. 4 illustrates the accuracy (R2 > 0.98) of the LSTM 

given in only humic acid and mixed natural organic matter. 

However, the authors mentioned one of the shortcomings and challenges of 

the deep learning-based approach has been the requirement for additional 

evaluation with further operational conditions and case studies to apply a 

globally viable model for more real-life applicable scenarios. However, Chew 

et al. (Chew et al., 2017) proposed an industrially deployable hybrid ANN 

model that combined Darcy's law of cake filtration through an ANN. This 

combination can conduct accurate predictions of crucial attributes, such as 

specific cake resistance and total suspended solids in feed water in an 

ultrafiltration pilot plant. The good results are shown in Fig. 5 for experimental 

and simulated results with the model ranging between 10–20 nephelometric 

turbidity units (NTU) at specific time intervals. In conclusion, researchers have 

been very keen on looking into AI for prediction of membrane fouling, with 

recent studies demonstrating very promising results. 

 

 

Fig. 2. Optimization of input parameters using genetic algorithm (Yousefi et 

al., 2021). 

 

 

Fig. 3. NE90 vs. RE SHF comparison (S. Park et al., 2019). 
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Fig. 4. Training and validation results of a single natural organic matter (a and b) and mixed natural organic matter (c and d) (Shim et al., 2021). 

 

4. Contribution of AI techniques to Resource Recovery of Water 

The resources recovery oriented (RRO) approach is adopted in research to 

address the water energy nexus. This allows water, and energy to be recovered 

from wastewater, reintroduced into the economy, augmenting their supply, and 

thus leading to a more circular economic model. Guest et al. (Guest et al., 2009) 

suggested that the traditional paradigm on wastewater treatment rooted in early 

20th century is not sustainable. It stresses on what must be removed from 

wastewater compared to RRO, which centralizes on what can be recovered 

from wastewater and considers the environmental, social, and economic 

ramifications of the purification processes. 

For example, and in the context of fresh water and nutrients recovery, Ye et 

al. (Ye et al., 2020) discussed the use of forward osmosis (FO) membrane 

process. A semipermeable membrane is used to force water from its feed side 

to draw side. The nutrients are rejected by the membrane and collected on the 

feed side. Osmotic Membrane Bioreactor was proposed by Qiu and Ting (Qiu 

& Ting, 2014) in which an Osmotic Membrane Reactor integrated an FO with 

biological processes that resulted in more than 95% of ammonia and nitrites. 

Qiu et al.  (Qiu et al., 2015) and Holloway et. al (Holloway et al., 2015) 

investigated MF and UF membranes respectively to enhance the OMBR. By 

running them in parallel with the FO membrane, the nutrients were extracted 

with fewer foreign substances, thus, increases the purity. However, a significant 

downside to the above procedures is membrane fouling, which reduces the 

yield from the abovementioned processes over time. In addition, the fouling 

control for these systems contributes to >50% to the total cost in the form of 

energy (Sheng et al., 2017). In the context too, pharmaceuticals pose a 

significant threat by being environmentally abundant, leading to antibiotic 

resistance bacteria (ARB) and leading to lower efficacy of commonly 

prescribed antibiotics. Zarei (Zarei, 2020) highlights how nanofiltration proved 

to be effective in high amoxicillin recovery. However, membrane fouling, and 

cleaning were the main obstacles that added to the economic costs. As 

discussed in section 3, AI utilization for the prediction of membrane fouling 

can enhance membrane selection for the processes, reduce costs with better 

fouling control system development and make the process more scalable on an 

industrial scale. 
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Fig. 5. Results of the hybrid model in simulation vs experimental 

(Chew et al., 2017). 

 

5. Challenges and Future Directions 

As discussed earlier in this context, AI techniques open many doors of 

possibilities for the improvement and enhancement of membrane technologies 

and filtration processes. There are also very particular challenges that exist, 

which must be addressed to create an industrially viable solution. Specifically, 

with ANNs, a study highlights how ANNs have poor reproducibility due to the 

involvement of random weights and biases (Alam et al., 2022). Moving onto 

more recent deep learning methods, another study pointed out the long training 

time required when using OCT images (S. Park et al., 2019). Apart from these 

issues there are more common challenges with the most crucial being the 

availability of data (Alam et al., 2022). The lack of large datasets from actual 

wastewater plants makes it very difficult to train an AI model to respond to real 

world issues at an industrial scale. This difficulty includes cases of 

unpredictability in operational conditions, affecting the AI accuracy rate. The 

study by Shim et al. (Shim et al., 2021) mentioned the need for more attention 

and progress in terms of the parameters and case studies being considered. 

Furthermore, not only is the sheer volume of data important, even the diversity 

of data is required to achieve accurate results. To achieve accurate results, the 

data must be sourced from different wastewater plants containing the inputs 

and outputs at different instances of the treatment process. However, obtaining 

these types of data can be difficult; thus, reducing the level of accuracy. 

Meanwhile, another challenge stems from the complexity of the membrane 

process. The complexity of the membrane is due to the numerous variables that 

are involved in the process itself, some parameters can be neglected or given 

less weight in the prediction by the model. This issue is highlighted by Niu et 

al. (Niu et al., 2022) where the input parameters that are selected, such as the 

chemical oxygen demand neglect the inner compositions of proteins and 

microbes. Neglecting some parameters, may alter prediction and accuracy that 

can lead to decreased product quality and poor process performance. Since an 

AI model acts as a black box, it prevents an understanding of the trends that 

involve membranes and how the different variables interact with each other. 

Thus, there should be further research involving AI to predict fouling and to 

understand the fouling process itself. 

It is necessary at this point to explore deep learning models further to 

decrease the need for frequent OCT images or applying AI techniques in 

machine learning that could use historical data based on parameters to predict 

fouling. Regarding the lack of large datasets to train the models on, an 

interesting approach is the utilization of Generative Adversarial Networks 

(GAN). The GANs are a type of deep learning model that can be used for image 

generation and translation. This means that GANs could potentially be used to 

generate synthetic OCT images that could be used as inputs to the fouling 

prediction model. Using GANs to generate synthetic OCT images could 

address the need for frequent imaging, as the model could generate images at a 

lower frequency than real-time measurements. Apart from that, future 

directions must also be centered around understanding the fouling mechanism 

more. Studies should focus on classifying various foulants on their properties 

and fouling tendencies. This would allow for exploiting AI models that could, 

in the future, respond in real time to immediate changes in the feed water 

composition based on live sensor data.  This would also assist in the resource 

recovery from wastewater, since accurate prediction of fouling, and 

understanding of various input parameters would lead to better integration of 

various extraction processes. Ultimately, the enhancement of membrane 

processes through AI can be extended to creating AI enhanced membrane 

filtration systems and reactors. This enhancement is not only promising in 

eliminating contaminants but also for recovering resources that contribute to 

modern sustainability goals and lead to a circular economy. 

 

6. Final Remarks 

The increasing presence of antibiotics in water poses many significant health 

risks, specifically in the domain of antibiotic resistance and an upsurge in 

antibiotic resistant bacteria. This calls for advancement in existing wastewater 

treatment plants. Membrane processes are employed to remove ECs 

effectively. Membrane fouling continues to appear as a main challenge. Many 

researchers have attempted to predict fouling. AI techniques have received 

attention in this regard to further enhance the said processes within two broad 

domains: parameter optimization and membrane fouling prediction. Various AI 

models, specifically GA in isolation or in conjunction with ANNs are utilized 

for the prediction of the most optimal parameters to maximize the removal rate 

for the contaminant. Even though these models were not applied to an industrial 

scale, it has the potential to rapidly reduce the levels of ECs regarding 

membrane fouling. Researchers evaluated the more generic application of 

ANNs to pre-existing datasets to predict fouling. Other researchers investigated 

an intensive DNN based approach that requires OCT images to provide 

accurate results. However, both approaches had problems of their own 

regarding the application at the industrial scale. The former approach would 

require much larger datasets and the latter would be more costly in terms of 

constantly taking OCT images and feeding them as inputs periodically. Hence, 

addressing these challenges in using current AI based approaches include the 

need for larger datasets from various wastewater treatment plants around the 

world. 

The dataset should contain various points of the filtration process over a 

period whilst also highlighting various operational parameters. The exploration 

of more novel deep learning architectures like GANs would facilitate better 

resource recovery from wastewater through better prediction of fouling and 

optimization of membrane processes. This paves the way for the integration of 

other extraction methods in conjunction with membrane processes to create 

membrane process systems. By addressing these challenges, AI can better 

provide accurate results for the performance of membranes in the removal of 

ECs in wastewater and in resource recovery. 
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