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1. Introduction 

Since the first commercialization efforts approximately 30 years ago, 

lithium-ion batteries (LIB) have attracted worldwide attention owing to their 

versatility, and wide use in consumer electronics, portable appliances, hybrid 

and electric vehicles (Sun, et al., 2018). The total energy per unit volume 

provided by LIBs is significantly higher than the conventional nickel-cadmium 

(Ni-Cd) or nickel-metal hydride (NiMH), and lead-acid batteries (Li, et al., 

2010). Some other advantages of LIBs include lighter weight, no memory 

effect, and a slow self-discharge rate. 

LIBs contain several critical metals such as Co, Li, Ni, and Mn as well as 

graphite which is widely used in LIB anodes. Co is a critical material, 

substantially and increasingly used in the lithium-ion batteries (LIBs). 

Currently, the terrestrial cobalt resources in the world are estimated at 
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HIGHLIGHTS 

➢ Rising lithium-ion battery demand has exponentially strained 

global resources of critical materials. 

➢ Meanwhile, growing numbers of end-of-life LIBs could 

serve as a source for recovering critical materials. 

➢ Various challenges hinder LIBs recycling, including process 

complexities, cost, and efficiency issues. 

➢ Cost-effective, energy-efficient, and green technologies, 

scaled and globally adopted, can address battery material 

recovery challenges. 
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(Ni), lithium (Li), and manganese (Mn) are critical components in LIB manufacturing. Moreover, the chemistry and composition of LIB materials vary widely based on 

applications. The purity requirements of critical materials in the LIB cathodes are >99.9 wt.%. Thus, there is a critical need of high purity battery grade materials, and it is 

forecasted to increase very significantly. However, the global resources of these materials are limited and are declining rapidly. On the other hand, the widespread 

applications of LIBs are expected to generate millions of end-of-life LIBs in future years. Considering the growing demand of high purity battery grade materials, the scrap 

LIBs could be potential source of the critical battery materials. However, the LIB industry lacks a clear path to large scale recycling due to several challenges involved in 

the recovery of critical materials from end-of-life LIBs. These challenges and potential solutions on those challenges are discussed in this review. 
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approximately 25 million tons, whereas the accumulated cobalt reserves in the 

world are approximately 7.6 million tons (Shedd, United States Geological 

Survey (USGS), 2022). According to U.S. Geological Survey (USGS), 170,000 

tons of cobalt was produced through mining and other activities. The richest 

sources of cobalt are primarily in the Democratic Republic of Congo which 

currently supply more than 70% of the global cobalt demand (Shedd, United 

States Geological Survey (USGS), 2022). Additionally, China, Russia, 

Australia, and Canada contribute to the global supply to some extent (Chen, et 

al., 2019, Zubi, et al., 2018). Australia and Chile are the leading contributors in 

global Li production through mines. Due to continuous explorations and 

increased applications for Li, the identified global Li resources have increased 

substantially to 89 million tons, whereas the global reserves are approximately 

22 million tons. Bolivia has the largest Li resources contributing to 23% of the 

global Li resources (Jaskula, United States Geological Survey (USGS), 2022).  

Mn is mainly extracted from terrestrial sources in South Africa, Gabon, and 

China. Although, land-based resources of Mn are irregularly distributed and 

have very low purity which leads to high extraction costs. Currently, the global 

Mn reserves are approximately 1.5 million tons (Schnebele, United States 

Geological Survey (USGS), 2022).  Finally, global Ni production is dominated 

by Indonesia, and Philippines while Canada, Russia, and Australia contribute 

to some extent (Steward, et al., 2019). The total Ni reserves are more than 95 

million tons. Approximately 2.7 million tons of the Ni reserves are produced 

through mines (McRae, United States Geological Survey (USGS), 2022).  The 

leading countries in graphite production are China, and Australia. China 

contributed to approximately 79% of the 1.2 million tons of natural graphite 

produced through mining. The total graphite reserves in the world are 

approximately 320 million tons whereas the total global resources exceed 800 

million tons (Olson, United States Geological Survey (USGS), 2022). 

The LIB industry is projected to consume approximately more than 60% of 

the global cobalt reserve by 2040 and the LIB demand is expected to outgrow 

the raw materials supply by 2030 (Alipanah, et al., 2023).  Hence, LIBs are 

considered as an important secondary resource for the extraction and recovery 

of cobalt (Golmohammadzadeh, et al., 2018). Within the next few years, the 

global critical materials reserves will be under pressure to fulfil the growing 

demands of LIB industry. Thus, there is a critical need for high purity battery 

grade materials which is forecasted to increase very significantly. The analysts 

have predicted a 575% increase in Li demand and 1237% increase in Ni 

demand for LIB production in the next 10 years (Beaudet, et al., 2020, 

Brudermüller, et al., World Economic Forum: Global Battery Alliance, 2019). 

However, the global resources of these materials are limited and are rapidly 

declining (Golmohammadzadeh, et al., 2018, Jagannath, et al., 2017). 

Therefore, the end-of-life LIBs should be properly handled and recycled to 

effectively use the limited resources of critical materials. Furthermore, the 

waste generated from spent LIBs contain large quantities of metallic 

contaminations which affect the environment adversely. Co and Ni are 

classified as carcinogenic, and mutagenetic materials whereas the organic 

electrolytes used in LIBs are detrimental to human health and environment 

(Fan, et al., 2020). Considering these factors, the LIB recycling is one of the 

most pursued research areas in the past decade. Figure 1 shows the growing 

trend in the patents published within last 2 decades. Figure 2 provides the 

geographical distribution of research organizations and companies active in 

LIB recycling research and patents filed in the last 5 years in the recycling of 

LIBs and critical materials in LIBs.  

On the other hand, the ever-growing applications of LIBs in recent years in 

various industries are expected to generate millions of tons of end-of-life (EOL) 

LIBs in future years. Over 5 million metric tons of LIBs are expected to reach 

EOL by 2030 which has given rise to serious environmental concerns. 

Considering the growing demand for high purity battery grade materials, the 

scrap or spent LIBs are potentially a secondary source of the critical battery 

materials with cost-effective recovery and recycling. However, some major 

challenges in LIB recycling can create obstacles in providing an adequate 

supply of critical materials. Some of these challenges include the chemistry and 

composition of LIB cathodes, complexity of the spent LIB feedstock, purity 

requirements of raw materials for LIB fabrication, the chemical forms of these 

raw materials (sulfates, carbonates, hydroxides, etc.), and several other 

limitations of the current recycling technologies (Castillo, et al., 2002, Chen, et 

al., 2019, Hanisch, et al., 2015, Ku, et al., 2016, Lai, et al., 2021, Ma, et al., 

2021, Mrozik, et al., 2021, Wei, et al., 2023, Zubi, et al., 2018). Therefore, there 

are only a few commercialization efforts around the globe related to recycling 

of LIBs. In this review, various approaches followed for the recycling of LIBs, 

grand challenges in LIB recycling, and future perspectives will be discussed. 

 

 

 

 

Fig. 1. Growing trend of patents published in the research field of LIB recycling. 
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Fig. 2. Geographical distribution of patents filed in the last 5 years in the LIB recycling research. 

 

2. Review scope and approach 

This review focuses on recycling of LIBs and grand challenges in various 

LIB recycling approaches in addition to the outlook into LIB recycling 

industry. Various online databases such as PubMed, Science Direct, Google 

Scholar, Knovel, SciFinder, and Derwent Innovation were used to conduct the 

review. The keywords “spent lithium-ion battery”, “recycling of spent LIBs”, 

“challenges in LIB recycling”, “waste management in LIB recycling”, 

“Perspectives in LIB recycling”, “separation and recovery technologies”, 

“recovery and recycling of critical materials”, “metal recovery”, 

“hydrometallurgy, solvent extraction, and pyrometallurgy”, “membrane 

separations for LIB recycling” etc. were used to narrow down the search. The 

articles were then checked for quality, topicality, and relevance based on the 

journal’s impact factor, the year of publication, and citations of the articles. 

 

3. LIB composition 

LIB packs are composed of a cathode, an anode, and organic electrolyte and 

a polymer-based separator. These components are laminated and compressed 

together to create an electrical contact between them (Ordoñez, et al., 2016, 

Steward, et al., 2019). Cathode materials generally consist of combinations of 

active metal powders including Co, Ni, Mn, Al, Fe, etc. depending on the 

application and desired electrical quantities. Some of the typical cathode 

material combinations are LiCoO2, LiNixMnyCozO2 (Ni:Mn:Co = 1:1:1, 6:2:2, 

or 8:1:1), Lithium manganese oxide (LMO), Lithium iron phosphate (LFP), and 

Lithium nickel cobalt aluminum oxide (NCA). Natural and artificial graphite 

are generally used as common anode materials whereas separators are usually 

made from polymers. An organic electrolyte is used to submerge electrodes and 

acts as an inert component. Longevity, and stability against both the cathodes 

and anode materials are some of the desired characteristics in electrolytes and 

separators (Steward, et al., 2019). 

 

4. LIB recycling approaches 

In this section, various technologies and approaches followed in LIB 

recycling will be introduced and discussed briefly. Echelon or secondary 

utilization and active constituent recovery after battery disassembly are 

Primarily used approaches for the recycling (Wei, et al., 2023). LIBs are 

discarded from their use when the energy densities are dropped to 

approximately 80% of their original capacity. An efficient recycling strategy 

for LIBs is echelon utilization until the battery capacity decays to 40% followed 

by active constituent recovery (Castillo, et al., 2002, Lu, et al., 2022, Sathre, et 

al., 2015). 

 

4.1. Echelon utilization 

Echelon utilization is primarily applied to used/spent LIBs in less-stressful 

applications including smart grids and storage systems. It avoids the large-scale 

scrapping, maximizes the battery lifespan, and makes LIB recycling safer. In 

this phase of LIB recycling, batteries are sorted according to internal resistance, 

side reaction, residual life, and remaining capacity. Based on the sorting results, 

batteries are dismantled and reconfigured for echelon utilization (Lai, et al., 

2021). 

 

4.2. Active constituent extraction and recovery 

After the secondary utilization, the batteries need to be recycled using 

material extraction to achieve circular economy. The extraction includes 

pretreatment, leaching of critical materials from waste LIB feedstock, 

separation, and purification of these critical materials. 

 

4.2.1. Pretreatment 

Pretreatment processes are applied in LIB recycling to separate materials that 

can be easily removed from battery packs. These materials are typically 

encapsulated in iron and plastic. Several treatments including mechanical 

separation, thermal treatment, mechanochemical treatment, and dissolution are 

applied in pretreatments. Mechanical separation consists of crushing, grinding, 

gravity, and magnetic separation. This coarse separation makes it easier to 

further treat smaller components in complex structures that cannot be easily 
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removed (Al-Thyabat, et al., 2013, Ku, et al., 2016). Thermal treatments are 

carried out to pyrolyze organic additives and binders so that active cathode and 

anode materials can be separated from the binders. This is also done to avoid 

any interference of binders or electrolytes in the recovery of individual critical 

materials (Hanisch, et al., 2015, Wei, et al., 2023). Mechanochemical treatment 

is used particularly for the decomposition of crystal structure of LiCoO2 where 

Co and Li are extracted via an acid leaching process at room temperature 

(Saeki, et al., 2004). In some cases, dissolution through organic solvents is also 

utilized to dissolve binders. However, the high costs of organic solvents and 

equipment put some limitations on industrial adaptation of this technology 

(Sun, et al., 2018, Zeng, et al., 2015). 

 

4.2.2. Metal extraction 

Followed by pretreatments, critical materials including the metals in LIBs 

are leached using pyrometallurgy and hydrometallurgy. Pyrometallurgy 

involves combustion of pretreated LIBs in the smelter where the components 

are broken down with simultaneous decomposition of residual organic 

materials. The metals are converted to stable alloys in this process, which can 

then further be treated to obtain pure metals (Fan, et al., 2020, Paulino, et al., 

2008). Pyrometallurgy is a simple and mature process that has been used 

widely. However, it has several disadvantages including efficiency, and waste 

generation which will be discussed in later section of the review. 

Hydrometallurgy consists of leaching metals into inorganic acids such as 

sulfuric acid, nitric acid, and hydrochloric acid. Typically, several process 

parameters such as high temperatures, sonication, and reducing agents are used 

to accelerate the leaching process (Lu, et al., 2022). In addition to inorganic 

acids, several organic acids such as citric acid, malic acid, aspartic acid, 

ascorbic acid are used due to their thermal stability, low environmental 

footprint, and recyclability (Lin, et al., 2021). Alkali and bioleaching have also 

been applied in hydrometallurgy to dissolve metals in spent LIBs (Chen, et al., 

2018, Moazzam, et al., 2021). However, large consumption of water, corrosion, 

secondary pollution, slow kinetics, low leaching efficiency are some of the 

challenges that still remain in these novel extraction techniques 

(Golmohammadzadeh, et al., 2018, Lai, et al., 2021). 

 

4.2.3. Metal element recovery 

After dissolving the metals into the leaching solutions, individual critical 

materials or a combination of materials are separated and recovered using 

various techniques including solvent extraction, membrane-assisted solvent 

extraction, electrochemical separation, and precipitation. Solvent extraction is 

a well-known and widely used technology for the recovery of critical materials 

which takes advantage of the complex formation ability of metals and get 

distributed into two different phases with the help of an extractant. Numerous 

commercially available extractants such as bis (2,4,4-trimethyl-pentyl) 

phosphinic acid (Cyanex 272), di(2-ethylhexyl) phosphoric acid (D2EHPA), 

diethylhexyl phosphoric acid (DEHPA), dithiophosphinic acid (Cyanex 301) 

have been used successfully for the separation and recovery of critical materials 

from spent LIBs (Carson, et al., 2020, Santanilla, et al., 2021, Swain, et al., 

2006, Swain, et al., 2015, Wang, et al., 2016). Chemical precipitation is another 

technique that leverages solubility of metal ions in the presence of OH-, S2-, 

C2O4
2- to separate individual metals (Biswal, et al., 2018) Redox reactions have 

also been used for recovering metals from LIBs by applying a potential 

difference between anode and cathode (Armstrong, et al., 1996). 

 

5. Challenges in spent LIB recycling 

Although there have been significant advancements in fundamental and 

applied research in LIB recycling in the recent years, there are still many 

challenges and limitations to overcome in order to develop a recycling process 

of LIBs that is cost-effective, environmentally friendly, and energy efficient. 

Rapidly changing compositions, designs, and materials, waste generation, 

efficiency of the recycling technology, complexity of the spent LIB feedstock 

make the recycling much more challenging. Currently, the LIB industry lacks 

a clear path to large scale recycling, since there are no commercially available 

technologies for LIB recycling. The state-of-the-art metal extraction 

technologies such as pyrometallurgy, hydrometallurgy, and solvent extraction 

that are primarily used in mining industries could be utilized in LIB recycling. 

However, these technologies have several limitations in terms of product 

purity, chemical usage, and process resilience for varying spent LIB feed 

compositions. The limitations as shown in Figure 3 will be discussed in detail 

in the following section. 

 

 

Fig. 3. Challenges associated in LIB recycling. 

 

Table 1 

Comparison between various types of LIB cathodes (Al-Thyabat, et al., 2013, Chen, 

et al., 2019, Hanisch, et al., 2015, Julien, et al., 2014, Manthiram, 2020, Murdock, 

et al., 2021, Saeki, et al., 2004, Sathre, et al., 2015, Zubi, et al., 2018). 

 

Cathode 
Crystal 

structure 

Variants and 

compositions 

Typical specific capacity 

(mAh/cm3) 

LiCoO2 Layered LiCoO2 150 

NMC  Layered NMC 111 

NMC 532 

NMC 811 

NMC 622 

NMC 955 

170 

NCA Layered LiNi0.3Co0.3Al0.3O2 200 

LMO Spinel LiMn2O4 100 

LFP Olivine LiFePO4 160 

 

5.1. Continuously changing battery materials 

The materials and compositions of LIB cathodes vary widely based on LIB 

applications. Currently, layered oxides, spinel oxides, and polyanion oxides are 

the three main types of cathode materials that are in use. The most widely used 

LIB cathodes include lithium nickel manganese cobalt oxide (NMC such as 

NMC111, NMC532, NMC622, NMC811, and NMC955), lithium nickel cobalt 

aluminum oxide (NCA), lithium cobalt oxide (LCO), lithium manganese oxide 

(LMO) and lithium iron phosphate (LFP). Table 1 provides a detailed 
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comparison between various types of cathodes used in LIBs. However, due to 

the limited resources of critical materials including cobalt, there is a critical 

need to develop new cathode materials by adding a new metal in the composite 

oxide or introducing a new cathode composition altogether. Addition of new 

materials and/or modification in the cathode composition of LIBs pose new 

challenges in the technologies that are developed for established cathodes. 

5.2. Complexity of the spent LIB feed (Black mass) 

One of the major limitations in the recovery of critical materials from spent 

LIBs is the complexity of the spent LIB feed or “black mass”. In case of some 

spent LIBs, the anodes, and cathodes from different types of LIBs are shredded 

together which results in a black mass of varied composition with both 

desirable elements such as Co, Mn, Ni, and Li, and undesirable elements such 

as Fe, Al, Cu, and Zn. The chemistries of LIB cathodes are constantly evolving 

due to supply constraints of critical materials and proprietary technology 

development by EV manufacturers. Therefore, there is a wide variability in 

black mass composition depending on the cathode chemistries. The traditional 

metal mining technologies may not be able to separate the critical materials in 

their pure form from the scrap LIBs since the scrap LIB feedstocks are much 

more complex than a typical mining feedstock. 

 

 

 

Table 2 

Comparison of LIB recycling technologies from energy and footprint standpoint (Boyden, et al., 2016, Du, et al., 2022, Rajaeifar, et al., 2021, Steward, et al., 2019, 

Velázquez-Martinez, et al., 2019, Velázquez-Martínez, et al., 2019) 

 

Desirable attributes in LIB recycling technology Existing LIB recycling technologies 

Conventional Solvent Extraction Pyrometallurgy Hydrometallurgy 

Single Step Multi-step process Multi-step - 

Low-cost off-the-shelf equipment - Specialized expensive equipment  

High purity   Low purity 

High yield   Low yield 

Minimal chemical usage High chemical usage  High chemical usage 

Minimal waste generation Significant waste generation   

Low capital and operating cost High capital and operating cost High capital and operating cost  

No equilibrium limitation Limited by equilibrium   

Ambient temperature operation  High temperature operation  

 

 

5.3. High purity and chemical form requirements 

The minimum purity requirements of critical materials in the LIB cathodes 

are typically 99.9 wt%. High purity materials are required to ensure high 

performance of LIBs and extended battery life with a full current capacity. Due 

to the inefficient recycling processes, additional separation steps need to be 

applied to achieve the desired purity of recovered metals. This adds to the total 

cost of the recycling processes, making them less feasible economically. 

Furthermore, the materials are typically preferred by battery manufacturers in 

the form of sulfates which can be easily incorporated as raw materials in the 

LIB cathode chemistries to reduce the capital and operating cost of the process. 

The individual metals can be recovered in the form of oxides or oxalates using 

pyrometallurgy or hydrometallurgy. This gives rise to the necessity of a 

conversion step to convert oxides or oxalates to sulfates. 

 

5.4. High energy consumption and ecological footprint 

Existing LIB recycling processes such as pyrometallurgy and 

hydrometallurgy can mitigate the growing concern of environmental impacts 

of spent LIB waste. However, the inefficiencies in the operation of these 

techniques, generated waste, and emissions after the recycling processes leave 

a negative impact on the environment. For instance, the incineration required 

in pyrometallurgy leads to the release of toxic and greenhouse gases into the 

environment. Additionally, incomplete combustion may lead to harmful waste 

residue (Zheng, et al., 2018). Furthermore, pyrometallurgy is highly energy 

intensive which makes the technology a high footprint process. On the other 

hand, hydrometallurgy relies upon treatment of solutions after extraction or 

dissolution. This requires additional wastewater treatment, thereby increasing 

the ecological footprint. It can also pose environmental risks via contamination 

of freshwater sources (Mrozik, et al., 2021). Table 2 provides desirable 

qualitative attributes in an ideal LIB recycling technology and energy and 

footprint requirements in existing LIB recycling technologies. 

 

5.5. Scaling up of the recycling technologies 

Most of the technologies developed for LIB recycling have been 

demonstrated on bench scale and simplified, simulated feed solutions. In 

comparison, the industrial scale waste LIB feedstock generation is on a much 

larger scale and much more complicated. This mismatch between the academic 

research and industry conditions limits the commercialization of LIB recycling 

technologies. Additionally, the challenges mentioned above in this section 

reduce the profits margin thereby making them economically non-viable (Ma, 

et al., 2021). 

 

6. Future perspectives 

Growing demand and applications of LIBs lead to a vast number of end-of-

life LIBs every year affecting the supply chain and the environment adversely. 

Although research advances and breakthroughs in the last two decades have 

addressed many challenges in LIB recycling, there is a critical need for cost-

efficient, environmentally friendly, and energy-efficient processes. 

Additionally, it is imperative to follow the 3R strategy (reduce, reuse, and 

recycle) while using LIBs for various applications (Arshad, et al., 2020). Most 

LIB recycling technologies prioritize enhancing efficiency and purity of final 

products. While these two performance parameters are critical for the success 

of the recycling technology, it is important to consider the waste generation 

caused due to the technology. More attention needs to be paid to control and/or 

minimize the generation of waste and use of environmentally friendly reagents. 

Currently, many of the developed countries have policies in place and there is 

a push towards development of sustainable LIB recycling. However, the 

awareness should be raised amongst citizens since they are the primary users. 

Additionally, international collaborative efforts would help promote 

sustainability driven LIB processes. With advancement of artificial intelligence 

(AI), spent LIB recycling and a mindful use of LIBs considering their entire 
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life cycle can be done in a highly efficient way. Intelligent battery management 

system can aid in life cycle analysis of LIBs and can in turn improve the 

recycling process. 
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