Membrane Fabrication by Solid Waste: Opportunities and Challenges

Document Type : Review Article


1 Universiti Teknologi Malaysia (UTM)

2 Universiti Technologi Malaysia (UTM)


Solid waste mismanagement is a global issue caused by population growth, industrialization, and daily human activity. Currently, the majority of trash produced is either dumped in landfills in affluent countries or open pits in poor nations. In addition to necessitating a great deal of land area, landfilling and open dumping may cause other environmental difficulties. In fact, solid wastes may provide many chances for reusing as raw materials for the creation of useful, high-value goods in response to the need for a circular economy. Due to their cheap prices, possible high removal efficiency for pollutants, renewable and sustainable qualities, solid waste-derived membranes have gained considerable research attention as a waste-to-resource solution for a variety of water treatment applications. The fabrication and applications of economical membranes manufactured from natural resources have been reported. However, comprehensive reviews that discuss the fabrication, properties and potential applications waste-generated membranes are still limited. The features and material recoverable resources for membrane production are emphasized in this study. Based on biopolymers, plastics, and inorganics recycled materials, a summary of membrane manufacturing and performance using recoverable resources for liquid separation applications is provided. There are many prospects in this fascinating field since waste-derived membrane for water filtration is a new technology. For converting solid wastes into useful membrane products for water treatment, this evaluation offers crucial advice.

Graphical Abstract

Membrane Fabrication by Solid Waste: Opportunities and Challenges


- This review discusses recycling solid waste into water-treatment membranes.

- Circular economy solid wastes can be utilized to make membranes.

- Suitable biopolymers, plastics, and inorganics waste for membranes is introduced.

- Membrane fabrication and performance with recycled materials are discussed.

- Future perspectives on waste-derived membranes are suggested.


Main Subjects

Abd Aziz, M.H., Othman, M.H.D., Hashim, N.A., Rahman, M.A., Jaafar, J., Hubadillah, S.K., Tai, Z.S., 2019a. Pretreated aluminium dross waste as a source of inexpensive alumina-spinel composite ceramic hollow fibre membrane for pretreatment of oily saline produced water. Ceram Int. 45(2), 2069-2078.
Abd Aziz, M.H., Othman, M.H.D., Ismail, A.F., Abdul, M., Rahman, J.J., Hubadillah, S.K., Cheng, T.Z., 2019b. Fabrication of ceramic hollow fibre membranes from aluminium dross waste for water purification. Mal. J. Fund. Appl. Sci. 15(4), 483-488.
Abdullayev, A., Bekheet, M.F., Hanaor, D.A., Gurlo, A., 2019. Materials and applications for low-cost ceramic membranes. Membranes. 9(9), 105.
Agarwal, A., Samanta, A., Nandi, B.K. and Mandal, A., 2020. Synthesis, characterization and performance studies of kaolin-fly ash-based membranes for microfiltration of oily waste water. J. Pet. Sci. Eng. 194, 107475.
Ahmad, B., Dilshad, M.R., Haider, B., Anwar, M.M., Ali, H., Gilani, S.M.A., Ahmad, H.B., Farooq, M., 2022. Synthesis of novel fly ash based geo-polymeric membranes for the treatment of textile waste water. Int. J. Environ. Sci. Technol. 19(7), 6117-6126.
Ahmad, N.A., Goh, P.S., Yogarathinam, L.T., Zulhairun, A.K., Ismail, A.F., 2020a. Current advances in membrane technologies for produced water desalination. Desalination. 493, 114643.
Ahmad, N.N.R., Ang, W.L., Leo, C.P., Mohammad, A.W., Hilal, N., 2021. Current advances in membrane technologies for saline wastewater treatment: A comprehensive review. Desalination. 517, 115170.
Ahmad, T., Guria, C., Mandal, A., 2020b. A review of oily wastewater treatment using ultrafiltration membrane: A parametric study to enhance the membrane performance. J. Water Process Eng. 36, 101289.
Aji, M.M., Narendren, S., Purkait, M.K., Katiyar, V., 2020. Utilization of waste polyvinyl chloride (PVC) for ultrafiltration membrane fabrication and its characterization. J. Environ. Chem. Eng. 8(2), 103650.
Alammar, A., Hardian, R., Szekely, G., 2022. Upcycling agricultural waste into membranes: from date seed biomass to oil and solvent-resistant nanofiltration. Green Chem. 24(1), 365-374.
Altalhi, T., Kumeria, T., Santos, A., Losic, D., 2013. Synthesis of well-organised carbon nanotube membranes from non-degradable plastic bags with tuneable molecular transport: Towards nanotechnological recycling. Carbon. 63, 423-433.
Amirilargani, M., Saljoughi, E., Mohammadi, T., Moghbeli, M.R., 2010. Effects of coagulation bath temperature and polyvinylpyrrolidone content on flat sheet asymmetric polyethersulfone membranes. Polymer Eng. Sci. 50(5), 885-893.
Anh, D.H., Toan, N.Q., Tung, P.C.T., Son, C.T., Nguyen, H.P.T., Nguyen, H.D., 2022. Fabrication of ultra‐thin alumina membranes utilizing waste aluminum cans. Vietnam J. Chem. 60(1), 84-91.
Assi, L.N., Carter, K., Deaver, E., Ziehl, P., 2020. Review of availability of source materials for geopolymer/sustainable concrete. J. Clean. Prod. 263, 121477.
Baruah, J., Bardhan, P., Mukherjee, A.K., Deka, R.C., Mandal, M., Kalita, E., 2022. Integrated pretreatment of banana agrowastes: Structural characterization and enhancement of enzymatic hydrolysis of cellulose obtained from banana peduncle. Int. J. Biol. Macromol. 201, 298-307.
Bascón-Villegas, I., Sánchez-Gutiérrez, M., Pérez-Rodríguez, F., Espinosa, E., Rodríguez, A., 2021. Lignocellulose Nanofibre Obtained from Agricultural Wastes of Tomato, Pepper and Eggplants Improves the Performance of Films of Polyvinyl Alcohol (PVA) for Food Packaging. Foods. 10(12), 3043.
Bharathi, S.S.K.N., Adiga, V., Khasnabis, S., Nath, B., Khan, N.A., Ramamurthy, P.C., 2022. Study of nano cellulose-based membrane tailorable biodegradability for use in the packaging application of electronic devices. Chemosphere. 309, 136683.
Cherubini, F., Bargigli, S., Ulgiati, S., 2009. Life cycle assessment (LCA) of waste management strategies: Landfilling, sorting plant and incineration. Energy. 34(12), 2116-2123.
Das, D., Nijhuma, K., Gabriel, A.M., Daniel, G.P.F., Murilo, D.D.M.I., 2020. Recycling of coal fly ash for fabrication of elongated mullite rod bonded porous SiC ceramic membrane and its application in filtration. J. Eur. Ceram. Soc. 40(5), 2163-2172.
Debnath, N.K., Acharya, V., Jangu, S., Singh, P., Majhi, M.R., Singh, V.K., 2021. Characterization of fly ash solid-waste for low-cost insulation refractory bricks. Mater. Today: Proc. 47, 1598-1600.
Del Rio, D.D.F., Sovacool, B.K., Griffiths, S., Bazilian, M., Kim, J., Foley, A.M., Rooney, D., 2022. Decarbonizing the pulp and paper industry: A critical and systematic review of sociotechnical developments and policy options. Renewable Sustainable Energy Rev. 167, 112706.
Dong, X., Lu, D., Harris, T.A., Escobar, I.C., 2021. Polymers and solvents used in membrane fabrication: a review focusing on sustainable membrane development. Membranes. 11(5), 309.
Dong, Y., Zhou, J.E., Lin, B., Wang, Y., Wang, S., Miao, L., Lang, Y., Liu, X., Meng, G., 2009. Reaction-sintered porous mineral-based mullite ceramic membrane supports made from recycled materials. J. Hazard. Mater. 172(1). 180-186.
Fredi, G., Dorigato, A., 2021. Recycling of bioplastic waste: A review. Adv. Ind. Eng. Polym. Res. 4(3), 159-177.
Gan, L., Qiu, F., Yue, X., Chen, Y., Xu, J., Zhang, T., 2021. Aramid nanofiber aerogel membrane extract from waste plastic for efficient separation of surfactant-stabilized oil-in-water emulsions. J. Environ. Chem. Eng. 9(5), 106137.
Gan, L., Zhang, D., Yue, X., Xu, J., Qiu, F., Zhang, T., 2022. A recyclable and regenerated aerogel membrane derived from waste plastic for emulsion separation. J. Environ. Chem. Eng. 10(5), 108221.
Garcia-Ivars, J., Wang-Xu, X., Iborra-Clar, M.I., 2017. Application of post-consumer recycled high-impact polystyrene in the preparation of phase-inversion membranes for low-pressure membrane processes. Sep. Purif. Technol. 175, 340-351.
Gebretatios, A.G., Pillantakath, A.R.K.K., Witoon, T., Lim, J.W., Banat, F., Cheng, C.K., 2022. Rice husk waste into various template-engineered mesoporous silica materials for different applications: A comprehensive review on recent developments. Chemosphere, 136843.
Gogoi, G., Hazarika, S., 2019. Dissolution of lignocellulosic biomass in ionic liquid-water media: Interpretation from solubility parameter concept. Korean J. Chem. Eng. 36(10), 1626-1636.
Goh, P.S., Othman, M.H.D., Matsuura, T., 2021. Waste Reutilization in Polymeric Membrane Fabrication: A New Direction in Membranes for Separation. Membranes. 11(10), 782.
Gönder, Z.B., Arayici, S., Barlas, H., 2012. Treatment of pulp and paper mill wastewater using utrafiltration process: Optimization of the fouling and rejections. Ind. Eng. Chem. Res. 51(17), 6184-6195.
Goswami, K.P., Pugazhenthi, G., 2020. Treatment of poultry slaughterhouse wastewater using tubular microfiltration membrane with fly ash as key precursor. J. Water Process Eng. 37, 101361.
Goswami, K.P., Pugazhenthi, G., 2021. Effect of binder concentration on properties of low-cost fly ash-based tubular ceramic membrane and its application in separation of glycerol from biodiesel. J. Cleaner Prod. 319, 128679.
Goswami, L., Kayalvizhi, R., Dikshit, P.K., Sherpa, K.C., Roy, S., Kushwaha, A., Kim, B.S., Banerjee, R., Jacob, S., Rajak, R.C., 2022. A critical review on prospects of bio-refinery products from second and third generation biomasses. Chem. Eng. J. 448, 137677.
Gupta, G.K., Liu, H., Shukla, P., 2019. Pulp and paper industry–based pollutants, their health hazards and environmental risks. Curr. Opin. Environ. Sci. Health. 12, 48-56.
How, L.F., Islam, A., Jaafar, M.S., Taufiq-Yap, Y.H., 2017. Extraction and characterization of γ-alumina from waste aluminium dross. Waste Biomass Valorization. 8(2), 321-327.
Hubadillah, S.K., Othman, M.H.D., Ismail, A.F., Rahman, M.A., Jaafar, J., Iwamoto, Y., Honda, S., Dzahir, M.I.H.M., Yusop, M.Z.M., 2018. Fabrication of low cost, green silica based ceramic hollow fibre membrane prepared from waste rice husk for water filtration application. Ceram. Int. 44(9), 10498-10509.
Issaoui, M., Jellali, S., Zorpas, A.A., Dutournie, P., 2022. Membrane technology for sustainable water resources management: Challenges and future projections. Sustainable Chem. Pharm. 25, 100590.
Issaoui, M., Limousy, L., 2019. Low-cost ceramic membranes: Synthesis, classifications, and applications. C.R. Chim. 22(2-3), 175-187.
Khaw, Y.Y., Chee, C.Y., Gan, S.N., Singh, R., Ghazali, N.N.N., Liu, N.S., 2019. Poly (lactic acid) composite films reinforced with microcrystalline cellulose and keratin from chicken feather fiber in 1‐butyl‐3‐methylimidazolium chloride. J. Appl. Polym. Sci. 136(24), 47642.
Kiani, S., Mousavi, S.M., Bidaki, A., 2021. Preparation of polyethylene terephthalate/xanthan nanofiltration membranes using recycled bottles for removal of diltiazem from aqueous solution. J. Cleaner Prod. 314, 128082.
Korolkov, I.V., Gorin, Y.G., Yeszhanov, A.B., Kozlovskiy, A.L., Zdorovets, M.V., 2018. Preparation of PET track-etched membranes for membrane distillation by photo-induced graft polymerization. Mater. Chem. Phys. 205, 55-63.
Kumar, S., Singh, E., Mishra, R., Kumar, A., Caucci, S., 2021. Utilization of plastic wastes for sustainable environmental management: a review. ChemSusChem. 14(19), 3985-4006.
Kusumocahyo, S.P., Ambani, S.K., Kusumadewi, S., Sutanto, H., Widiputri, D.I., Kartawiria, I.S., 2020. Utilization of used polyethylene terephthalate (PET) bottles for the development of ultrafiltration membrane. J. Environ. Chem. Eng. 8(6), 104381.
Kusumocahyo, S.P., Ambani, S.K., Marceline, S., 2021. Improved permeate flux and rejection of ultrafiltration membranes prepared from polyethylene terephthalate (PET) bottle waste. Sustainable Environ. Res. 31(1), 1-11.
Lai, W.H., Hong, C.Y., Tseng, H.H., Wey, M.Y., 2021. Fabrication of waterproof gas separation membrane from plastic waste for CO2 separation. Environ. Res. 195, 110760.
Lehrhofer, A.F., Goto, T., Kawada, T., Rosenau, T., Hettegger, H., 2022. In vitro synthesis of cellulose–A mini-review. Carbohydr. Polym. 285, 119222.
Li, T., Takkellapati, S., 2018. The current and emerging sources of technical lignins and their applications. Biofuels, Bioprod. Biorefin. 12(5), 756-787.
Lin, Y.T., Kao, F.Y., Chen, S.H., Wey, M.Y., Tseng, H.H., 2020. A facile approach from waste to resource: Reclaimed rubber-derived membrane for dye removal. J. Taiwan Inst. Chem. Eng. 112, 286-295.
Lim, H.K., Song, H.Y., Ko, J.H., Lee, S.A., Lee, K.I., Hwang, I.T., 2014. An alternative path for the preparation of triacetylcellulose from unrefined biomass. Adv. Chem. Eng. Sci. 5(01), 33.
Livazovic, S., Li, Z., Behzad, A.R., Peinemann, K.V., Nunes, S.P., 2015. Cellulose multilayer membranes manufacture with ionic liquid. J. Membr. Sci. 490, 282-293.
Lopatina, A., Anugwom, I., Blot, H., Conde, Á.S., Mänttäri, M., Kallioinen, M., 2021. Re-use of waste cotton textile as an ultrafiltration membrane. J. Environ. Chem. Eng. 9(4), 105705.
Mahinroosta, M., Allahverdi, A., 2018. Hazardous aluminum dross characterization and recycling strategies: A critical review. J. Environ. Manage. 223, 452-468.
Mohanty, S.S., Koul, Y., Varjani, S., Pandey, A., Ngo, H.H., Chang, J.S., Wong, J.W., Bui, X.T., 2021. A critical review on various feedstocks as sustainable substrates for biosurfactants production: a way towards cleaner production. Microb. Cell Fact. 20(1), 1-13.
Mrozik, W., Rajaeifar, M.A., Heidrich, O., Christensen, P., 2021. Environmental impacts, pollution sources and pathways of spent lithium-ion batteries. Energy Environ. Sci. 14(12), 6099-6121.
Mulyati, S., Armando, M.A., Mawardi, H., Fahrina, A., Malahayati, N., Syawaliah, S., 2018. Fabrication of hydrophilic and strong pet-based membrane from wasted plastic bottle. Rasayan J. Chem. 11, 1609-1617.
Munawer, M.E., 2018. Human health and environmental impacts of coal combustion and post-combustion wastes. J. Sustainable Min. 17(2), 87-96.
Mushtaq, F., Zahid, M., Bhatti, I.A., Nasir, S., Hussain, T., 2019. Possible applications of coal fly ash in wastewater treatment. J. Environ. Manage. 240, 27-46.
Obotey Ezugbe, E., Rathilal, S., 2020. Membrane technologies in wastewater treatment: a review. Membrane. 10(5), 89.
Onyelowe, K.C., Obianyo, I.I., Onwualu, A.P., Onyia, M.E., Moses, C., 2021. Morphology and mineralogy of rice husk ash treated soil for green and sustainable landfill liner construction. Cleaner Mater. 1, 100007.
Opálková Šišková, A., Pleva, P., Hrůza, J., Frajová, J., Sedlaříková, J., Peer, P., Kleinová, A., Janalíková, M., 2021. Reuse of Textile Waste to Production of the Fibrous Antibacterial Membrane with Filtration Potential. Nanomaterials. 12(1), 50.
Pulido, B.A., Habboub, O.S., Aristizabal, S.L., Szekely, G., Nunes, S.P., 2019. Recycled poly (ethylene terephthalate) for high temperature solvent resistant membranes. ACS Appl. Polym. Mater. 1(9), 2379-2387.
Ramamoorthy, S.K., Skrifvars, M., Persson, A., 2015. A review of natural fibers used in biocomposites: Plant, animal and regenerated cellulose fibers. Polym. Rev. 55(1), 107-162.
Rathoure, A.K., 2020. Heavy metal pollution and its management: Bioremediation of heavy metal. In Waste Management: Concepts, Methodologies, Tools, and Applications (pp. 1013-1036). IGI Global.
Ray, S.S., Gandhi, M., Chen, S.S., Chang, H.M., Dan, C.T.N., Le, H.Q., 2018. Anti-wetting behaviour of a superhydrophobic octadecyltrimethoxysilane blended PVDF/recycled carbon black composite membrane for enhanced desalination. Environ. Sci. Water Res. Technol. 4(10), 1612-1623.
Saha, K., Deka, J., Gogoi, R.K., Datta, K.K.R. and Raidongia, K., 2022. Applications of Lamellar Membranes Reconstructed from Clay Mineral-Based Nanosheets: A Review. ACS Appl. Nano Mater. 5 (11), 15972–15999
Samadi, A., Gao, L., Kong, L., Orooji, Y., Zhao, S., 2022. Waste-derived low-cost ceramic membranes for water treatment: Opportunities, challenges and future directions. Resour. Conserv. Recycl. 185, 106497.
Sangkham, S., Faikhaw, O., Munkong, N., Sakunkoo, P., Arunlertaree, C., Chavali, M., Mousazadeh, M., Tiwari, A., 2022. A review on microplastics and nanoplastics in the environment: Their occurrence, exposure routes, toxic studies, and potential effects on human health. Mar. Pollut. Bull. 181, 113832.
Sebastian, R.M., Louis, J., 2021. Understanding waste management at airports: A study on current practices and challenges based on literature review. Renewable Sustainable Energy Rev. 147, 111229.
Septevani, A.A., Rifathin, A., Sari, A.A., Sampora, Y., Ariani, G.N., Sondari, D., 2020. Oil palm empty fruit bunch-based nanocellulose as a super-adsorbent for water remediation. Carbohydr. Polym. 229, 115433.
Sharma, N., Kalbar, P.P., Muhammad, S., 2022. Global review of circular economy and life cycle thinking in building Demolition Waste Management: A way ahead for India. Build. Environ. 222, 109413.
Shokravi, H., Mohammadyan-Yasouj, S.E., Koloor, S.S.R., Petrů, M., Heidarrezaei, M., 2021. Effect of alumina additives on mechanical and fresh properties of self-compacting concrete: A review. Processes. 9(3), 554.
Ślusarczyk, C., Fryczkowska, B., 2019. Structure–property relationships of pure cellulose and GO/CEL membranes regenerated from ionic liquid solutions. Polymers. 11(7), 1178.
Srishti, K., Rohit, R., Rashmi, K., 2022. Microbial Production of Amylase using Lignocellulosic Biomass: Recent developments and prospects. Res. J. Biotechnol. 17, 5.
Stenstad, P., Andresen, M., Tanem, B.S., Stenius, P., 2008. Chemical surface modifications of microfibrillated cellulose. Cellulose. 15(1), 35-45.
Subramanian, K., Sarkar, M.K., Wang, H., Qin, Z.H., Chopra, S.S., Jin, M., Kumar, V., Chen, C., Tsang, C.W., Lin, C.S.K., 2022. An overview of cotton and polyester, and their blended waste textile valorisation to value-added products: A circular economy approach–research trends, opportunities and challenges. Crit. Rev. Environ. Sci. Technol. 52(21), 3921-3942.
Thakur, S., Verma, A., Sharma, B., Chaudhary, J., Tamulevicius, S., Thakur, V.K., 2018. Recent developments in recycling of polystyrene based plastics. Curr. Opin. Green Sustainable Chem. 13, 32-38.
Tsakiridis, P.E., Oustadakis, P., Agatzini-Leonardou, S., 2013. Aluminium recovery during black dross hydrothermal treatment. J. Environ. Chem. Eng. 1(1-2), pp.23-32.
Verma, S.K., Dwivedi, V.K., Dwivedi, S.P., 2021. Utilization of aluminium dross for the development of valuable product–A review. Mater. Today:. Proc. 43, 547-550.
 Vignesh, N., Suriyaraj, S.P., Selvakumar, R., Chandraraj, K., 2021. Facile fabrication and characterization of zn loaded cellulose membrane from cotton microdust waste and its antibacterial properties—a waste to value approach. J. Polym. Environ. 29(5), 1651-1662.
Vinodhini, P.A., Sudha, P.N., 2017. Removal of heavy metal chromium from tannery effluent using ultrafiltration membrane. Text. Clothing Sustainability. 2(1), 1-15.
Wiah, E.N., Addor, J.A., Alao, F.I., 2022. Transitional probabilities for plastic waste management and implication on sustainability. Sustainable Environment. 8(1), 2118654.
Wongchitphimon, S., Wang, R., Jiraratananon, R., Shi, L., Loh, C.H., 2011. Effect of polyethylene glycol (PEG) as an additive on the fabrication of polyvinylidene fluoride-co-hexafluropropylene (PVDF-HFP) asymmetric microporous hollow fiber membranes. J. Membr. Sci. 369(1-2), 329-338.
Wu, M.H., Zhang, Y.Q., 2014. Nanofiltration recovery of sericin from silk processing waste and synthesis of a lauroyl sericin-based surfactant and its characteristics. RSC Adv. 4(8), 4140-4145.
Xia, G., Zhou, Q., Xu, Z., Zhang, J., Ji, X., Zhang, J., Nawaz, H., Wang, J., Peng, J., 2021. Cellulose-based films with ultraviolet shielding performance prepared directly from waste corrugated pulp. Polymers. 13(19), 3359.
Xiao, Y., Reuter, M.A., 2002. Recycling of distributed aluminium turning scrap. Miner. Eng. 15(11), 963-970.
Xiong, Q., Tian, Q., Yue, X., Xu, J., He, X., Qiu, F., Zhang, T., 2022. Superhydrophobic PET@ ZnO Nanofibrous Membrane Extract from Waste Plastic for Efficient Water-In-Oil Emulsion Separation. Ind. Eng. Chem. Res. 61(32), 11804-11814.
Xu, G.R., An, X.C., Das, R., Xu, K., Xing, Y.L., Hu, Y.X., 2020. Application of electrospun nanofibrous amphiphobic membrane using low-cost poly (ethylene terephthalate) for robust membrane distillation. J. Water Process Eng. 36, 101351.
Yousuf, A., Manzoor, S.O., Youssouf, M., Malik, Z.A., Khawaja, K.S., 2020. Fly ash: production and utilization in India-an overview. J. Mater. Environ. Sci. 11(6), 911-921.
Yusuf, A., Sodiq, A., Giwa, A., Eke, J., Pikuda, O., De Luca, G., Di Salvo, J.L., Chakraborty, S., 2020. A review of emerging trends in membrane science and technology for sustainable water treatment. J. Clean. Prod. 266, 121867.
Zhang, L., Huang, C., Zhang, C., Pan, H., 2021. Swelling and dissolution of cellulose in binary systems of three ionic liquids and three co-solvents. Cellulose. 28(8), 4643-4653.
Zhang, X., Han, L., Wei, H., Tan, X., Zhou, W., Li, W., Qian, Y., 2022. Linking urbanization and air quality together: A review and a perspective on the future sustainable urban development. J. Cleaner Prod. 346, 130988.
Zhu, L., Dong, Y., Li, L., Liu, J., You, S.J., 2015. Coal fly ash industrial waste recycling for fabrication of mullite-whisker-structured porous ceramic membrane supports. RSC Adv. 5(15), 11163-11174.
Zhu, L., Ji, J., Wang, S., Xu, C., Yang, K., Xu, M., 2018. Removal of Pb (II) from wastewater using Al2O3-NaA zeolite composite hollow fiber membranes synthesized from solid waste coal fly ash. Chemosphere. 206, 278-284.
Zhu, X., Yang, J., Yang, Y., Huang, Q., Liu, T., 2022. Pyrometallurgical process and multipollutant co-conversion for secondary aluminum dross: A review. J. Mater. Res. Technol. 21, 1196.
Zhuang, G.L., Wey, M.Y., Tseng, H.H., 2016. A novel technique using reclaimed tire rubber for gas separation membranes. J. Membr. Sci. 520, 314-325.
Zierold, K.M., Odoh, C., 2020. A review on fly ash from coal-fired power plants: chemical composition, regulations, and health evidence. Rev. Environ. Health. 35(4), 401-418.
Zou, D., Chen, X., Drioli, E., Qiu, M., Fan, Y., 2019a. Facile mixing process to fabricate fly-ash-enhanced alumina-based membrane supports for industrial microfiltration applications. Ind. Eng. Chem. Res. 58(20), 8712-8723.
Zou, D., Fan, W., Xu, J., Drioli, E., Chen, X., Qiu, M., Fan, Y., 2021. One-step engineering of low-cost kaolin/fly ash ceramic membranes for efficient separation of oil-water emulsions. J. Membr. Sci. 621, 118954.
Zou, D., Xu, J., Chen, X., Drioli, E., Qiu, M., Fan, Y., 2019b. A novel thermal spraying technique to fabricate fly ash/alumina composite membranes for oily emulsion and spent tin wastewater treatment. Sep. Purif. Technol. 219, 127-136.