Grand Challenges in Fuel cell Technology towards Resource Recovery

Document Type : Grand Challenges

Authors

1 Department of Chemical and Biological Engineering, American University of Sharjah

2 American University of Sharjah

3 Sustainable and Renewable Energy Engineering Department, University of Sharjah

Abstract

Fuel cells are perceived as promising candidates for bridging the gap between the future clean energy path and the current ‘dirty energy’ path. Amongst a miscellany of fuel cell types, PEMFCs are utilized in several applications by virtue of their greater energy density and ecofriendly nature (if hydrogen is the fuel). Certain fuel cell types such as the PEMFCs can be employed to not only generate power, but also as electrolyzers to harvest oxygen and hydrogen for space applications.  The recovered oxygen can be used to meet oxygen requirements in the spacecrafts while the recovered hydrogen can be used to generate electricity. Other types of fuel cells (e.g., the microbial fuel cell (MFC)) simultaneously works to treat the wastewater and produce electricity. However, there are several challenges that hinder fuel cells from reaching their full potential. Large scale commercialization still requires the unraveling the technical issues that dent their reliability, durability, and robustness. Hence, major challenges in resource recovery remain to exist, such as the high cost, shortage of suitable noble catalysts, and reduced lifespan. The hurdle of technical problems should be overcome first to gain public trust; thereby, catalyzing the expansive commercial roll out of fuel cells and more intensive research towards resource recovery can be suitably promoted.

Graphical Abstract

Grand Challenges in Fuel cell Technology towards Resource Recovery

Highlights

Fuel cells are promising candidates for power generation with zero to low carbon footprint.

Fuel cells are ideal for stationery and transportation sectors due to numerous advantages.

Large scale commercialization still requires the unraveling the technical issues such as durability, and cost.

Keywords

Main Subjects


Akinyele, D., Elijah, O., Abraham, A., 2020. Review of Fuel Cell Technologies and Applications for Sustainable Microgrid Systems. Inventions. 5(3),1–35. doi: 10.3390/inventions5030042.
Alashkar, A., Amani, A.O, Muhammad, T., Muhammad, Q., 2022. A Critical Review on the Use of Ionic Liquids in Proton Exchange Membrane Fuel Cells. Membranes.12(2), 178. doi: 10.3390/membranes12020178.
Al-Othman, A., Muhammad, T., Remston, M., Salam, D., Mehmet, O., Muhammad, Q., Abdul, G. O., 2022. Artificial Intelligence and Numerical Models in Hybrid Renewable Energy Systems with Fuel Cells: Advances and Prospects. Energy Convers. Manag .253.                                doi: 10.1016/j.enconman.2021.115154
Andersson, J., Stefan, G., 2019. Large-Scale Storage of Hydrogen. Int. J. Hydrogen Energy. 44(23), 11901–19. doi: 10.1016/j.ijhydene.2019.03.063.
Baroutaji, A., Tabbi, W., Mohamad, R., Abdul, G. O., 2019. Comprehensive Investigation on Hydrogen and Fuel Cell Technology in the Aviation and Aerospace Sectors. Renew. Sustain. Energy Rev.106, 31–40. doi: 10.1016/j.rser.2019.02.022.
Cigolotti, V., Matteo, G., 2021a. Stationary Fuel Cell Applications: Current and Future Technologies-Costs, Performances, and Potential. Adv. Fuel Cells.                                        https://www.ieafuelcell.com/fileadmin/publications/2021/2021_AFCTCP_Stationary_Application_Performance.pdf (accessed 28 September 2022)
Cigolotti, V., Matteo G., Petronilla, F., Antonio, B., 2021b. Comprehensive Review on Fuel Cell Technology for Stationary Applications as Sustainable and Efficient Poly-Generation Energy Systems.Energies.14(16), 4963. doi: 10.3390/en14164963.
Cullen, D. A., Neyerlin, K. C., Rajesh, K., Ahluwalia, Rangachary, M., Karren L. More, R. L. Borup, Adam, Z. W., Deborah, J. M., Ahmet, K., 2021. New Roads and Challenges for Fuel Cells in Heavy-Duty Transportation. Nat. Energy. 6(5), 462–74.                           doi: 10.1038/s41560-021-00775-z.
Dwivedi, K. A., Song, J. H., Chin, T. W., Sunil, K., 2022. Fundamental Understanding of Microbial Fuel Cell Technology: Recent Development and Challenges. Chemosphere. 288. doi: 10.1016/j.chemosphere.2021.132446.
Fan, L., Zhengkai, T., Siew, H. C., 2021. Recent Development of Hydrogen and Fuel Cell Technologies: A Review. Energy Reports. 7, 8421–46.                                                 doi: 10.1016/j.egyr.2021.08.003.                                        
Fang, Q., Ute de, H., Dominik, S., Florian, T., Victor, R.H., Roland, P., Ludger, B., 2020. Degradation Analysis of an SOFC Short Stack Subject to 10,000 h of Operation. J. Electrochem. Soc. 167(14),144508. doi: 10.1149/1945-7111/abc843.
Ferriday, T. B., Peter, H. M., 2021. Alkaline Fuel Cell Technology - A Review. Int. J. Hydrogen Energy. 46(35), 18489–510.                             doi:10.1016/j.ijhydene.2021.02.203.
Gayen, P., Sulay, S., Xinquan, L., Kritika, S., Vijay, K. R., 2021. High-Performance AEM Unitized Regenerative Fuel Cell Using Pt-Pyrochlore as Bifunctional Oxygen Electrocatalyst. Proc. Natl. Acad. Sci.118(40). doi: 10.1073/pnas.2107205118.
Guo, Y., Jiao, W., Shrameeta, S., Xin, W., Yang, L., Yexin, D., Jun, R., Pingping, Z., Xianhua, L., 2020. Simultaneous Wastewater Treatment and Energy Harvesting in Microbial Fuel Cells: An Update on the Biocatalysts. RSC Adv. 10, 25874-87            doi: 10.1039/d0ra05234e.
Haider, R., Yichan, W., Zi, F.M., David, P. W., Lei, Z., Xianxia, Y., Shuqin, S., Jiujun, Z., 2021. High Temperature Proton Exchange Membrane Fuel Cells: Progress in Advanced Materials and Key Technologies. Chem. Soc. Rev. 50(2),1138–87.                               doi: 10.1039/d0cs00296h
Han, G., Yong, K. K., Joong, B. K., Sanghun, L., Joongmyeon, B., Eun, A.C., Bong, J.L., Sungbaek, C., Jinwoo, P., 2020. Development of a High-Energy-Density Portable/Mobile Hydrogen Energy Storage System Incorporating an Electrolyzer, a Metal Hydride and a Fuel Cell. Appl. Energy. 259.                                                        doi: 10.1016/j.apenergy.2019.114175.
Jeon, W.Y., Jung-Hwan, L., Khandmaa, D., Young-Bong, C., Tae-Hyun, K., Hae-Hyoung, L., Hae-Won, K., Hyug-Han, K., 2019. Performance of a Glucose-Reactive Enzyme-Based Biofuel Cell System for Biomedical Applications. Sci. Rep.                              doi: 10.1038/s41598-019-47392-1.
Kendall, M., 2018. Fuel Cell Development for New Energy Vehicles (NEVs) and Clean Air in China. Prog. Nat. Sci. Mater. Int. 28(2),113–20. doi: 10.1016/j.pnsc.2018.03.001.
Khokhar, M., 2022. Rich Countries Caused Pakistan’s Catastrophic Flooding. Their Response? Inertia and Apathy. The Guardian.                                                                      https://amp.theguardian.com/commentisfree/2022/sep/05/rich-countries-pakistan-flooding-climate-crisis-cop27 (accessed 24 September, 2022)
Kocher, K., Stefan, K., Walter, L., Viktor, H., 2021. Cold Start Behavior and Freeze Characteristics of a Polymer Electrolyte Membrane Fuel Cell. Fuel Cells. 21(4), 363–72. doi: 10.1002/fuce.202000106.
Koroglu, E.O., Hulya, C.Y., Ahmet, D., Bestami, O., 2018. Scale-up and Commercialization Issues of the MFCs: Challenges and Implications. Biomass, Biofuels, Biochem. Microb. Electrochem. Technol. Sustain. Platf. Fuels, Chem. Remediat.565-83.                         doi: 10.1016/B978-0-444-64052-9.00023-6.
Legree, M., Jocelyn, S., Fabrice, M., Abdel, S.A, Matthieu, F., Frédéric, B., Jean-Louis, B., 2020. Autonomous Hydrogen Production for Proton Exchange Membrane Fuel Cells PEMFC. J. Energy Power Technol. 2(2),1–18. doi: 10.21926/jept.2002004.
Liu, Y., Jianhua, G., Pucheng, P., Shengzhuo, Y., Fang, W., Hua, Q., 2019. Effects of Dynamic Changes in Inlet Temperature on Proton Exchange Membrane Fuel Cell. J. Renew. Sustain. Energy. 11(4), 044302. doi: 10.1063/1.5050300.
Mendonça, C., António, F, Diogo, M. F.S., 2021. Towards the Commercialization of Solid Oxide Fuel Cells: Recent Advances in Materials and Integration Strategies. Fuels. 2(4), 393-419. doi: 10.3390/fuels2040023.
Menshikov, V.S., Ivan, N. N., Sergey, V. B., Anastasya, A. A., Olga, I. S., Vladimir E.G., 2021. Methanol, Ethanol, and Formic Acid Oxidation on New Platinum-Containing Catalysts. Catalysts. 11(2), 1–18. doi: 10.3390/catal11020158.
Mohammed, H., Amani, A., Paul, N., Muhammad, T., Mamdouh, E.H.A., 2019. Direct Hydrocarbon Fuel Cells: A Promising Technology for Improving Energy Efficiency. Energy. 172,207–19. doi: 10.1016/j.energy.2019.01.105.
Nauman, J. R. M., Amani, A., Muhammad, T., Abdul, G.O., 2022. Recent Developments in Graphene and Graphene Oxide Materials for Polymer Electrolyte Membrane Fuel Cells Applications. Renew. Sustain. Energy Rev. 168, 112836.                                             doi: 10.1016/j.rser.2022.112836.
Nimir, W., Amani, A., Muhammad, T., Ahmed, A.M., Azza, A., Hassan, K.M.,Fatemeh, K., Ceren, K., 2021. Approaches towards the Development of Heteropolyacid-Based High Temperature Membranes for PEM Fuel Cells. Int. J. Hydrogen Energy.                       doi: 10.1016/j.ijhydene.2021.11.174.
Nosek, D., Piotr, J., Agnieszka, C.K., 2020. Anode Modification as an Alternative Approach to Improve Electricity Generation in Microbial Fuel Cells. Energies. 13(24).               doi: 10.3390/en13246596.
Omrani, R., Bahman, S., 2019. Review of Gas Diffusion Layer for Proton Exchange Membrane-Based Technologies with a Focus on Unitised Regenerative Fuel Cells. Int. J. Hydrogen Energy. 44(7), 3834–60. doi: 10.1016/j.ijhydene.2018.12.120.
Osman, A.I., Neha, M., Ahmed, M. E., Mahmoud, H., Amer, A.H., Ala’a, H. A.M., David, W.R., 2022. Hydrogen Production, Storage, Utilisation and Environmental Impacts: A Review. Environ. Chem. Lett. 20(1), 153–88. doi: 10.1007/s10311-021-01322-8.
Peng, Q., Pengfei, S., Xiaosi, Q., Yanli, C., Xiu, G., 2021. Solving the Trifunctional Activity Challenge of Catalysts in Unitized Regenerative Fuel Cells via 1T-MoS2-Coordinated Single Pd Atoms. ACS Omega. 6(38),24731–38. doi: 10.1021/acsomega.1c03575.
Perera, F., 2018. Pollution from Fossil-Fuel Combustion Is the Leading Environmental Threat to Global Pediatric Health and Equity: Solutions Exist. Int. J. Environ. Res. Public Health. 15(1). doi: 10.3390/ijerph15010016
Pistono, A.O., Cynthia, A.R., 2020. Automotive Subzero Cold-Start Quasi-Adiabatic Proton Exchange Membrane Fuel Cell Fixture: Design and Validation. Molecules. 25(6), 1410. doi: 10.3390/molecules25061410.
Pu, Z., Gaixia, Z., Amir, H., Dewen, Z., Shanyu, W., Shijun, L., Zhangxin, C., Shuhui, S., 2021. Regenerative Fuel Cells: Recent Progress, Challenges, Perspectives and Their Applications for Space Energy System. Appl. Energy. 283.                                                  doi: 10.1016/j.apenergy.2020.116376.
Qussay, R., Mohanad, M., Muthana, K. A.Z., Rand, Q. A.K., Duha, K. A.Z., Mohanad, M. S., 2021. A Review: Fuel Cells Types and Their Applications. IJSEAS. (7), 2395–3470. https://ijseas.com/volume7/v7i7/IJSEAS202107133.pdf (accessed 28 September,2022)
de Sá, M. H., Pinto, A. M. F. R., Oliveira,V. B. 2022. Passive Direct Methanol Fuel Cells as a Sustainable Alternative to Batteries in Hearing Aid Devices – An Overview. Int. J. Hydrogen Energy. 47(37),16552–67. doi: 10.1016/j.ijhydene.2022.03.146.
Salam, M. A., Md Shehan, H., Paroma, A., Kawsar, A., Md Sahab, U., Tareq, H., Nasrin, P., 2020. Effect of Temperature on the Performance Factors and Durability of Proton Exchange Membrane of Hydrogen Fuel Cell: A Narrative Review. Mater. Sci. Res. India. 17(2),179–91. doi: 10.13005/msri/170210.
Sazali, N., Wan Norharyati, W.S., Ahmad, S.J., Mohd, N. M.R., 2020. New Perspectives on Fuel Cell Technology: A Brief Review. Membranes (Basel).10(5). doi:10.3390/membranes10050099.
Tang, J., Chunhui, Z., Xuelu, S., Jiajun, S., Jeffrey, A.C., 2019. Municipal Wastewater Treatment Plants Coupled with Electrochemical, Biological and Bio-Electrochemical Technologies: Opportunities and Challenge toward Energy Self-Sufficiency. J. Environ. Manage. 234, 396–403. doi: 10.1016/j.jenvman.2018.12.097.
Tawalbeh, M., Suma, A., Amani, A., Rana, M.N.J., 2022b. The Operating Parameters, Structural Composition, and Fuel Sustainability Aspects of PEM Fuel Cells: A Mini Review. Fuels. 3(3),449–74. doi: 10.3390/fuels3030028.
Tawalbeh, M., Amani, A., Ahmad, K., Afifa, F., Malek, A., 2022a. Lignin/Zirconium Phosphate/Ionic Liquids-Based Proton Conducting Membranes for High-Temperature PEM Fuel Cells Applications. Energy. 260,125237. doi: 10.1016/j.energy.2022.125237.
Tawalbeh, M., Rana, M.N.J., Amani, A., Fares, A., 2022c. The Novel Advancements of Nanomaterials in Biofuel Cells with a Focus on Electrodes’ Applications. Fuel. 322,124237. doi: 10.1016/j.fuel.2022.124237.
Thomas, J. M., Peter, P. Edwards, Peter, J. D., Gari, P. O., 2020. Decarbonising Energy: The Developing International Activity in Hydrogen Technologies and Fuel Cells. J. Energy Chem. 51,405–15. doi: 10.1016/j.jechem.2020.03.087.
Thompson, S.T., Brian, D. J., Jennie, M. H.K., Cassidy, H., Daniel, A. D, Rajesh, A., Adria, R. W., Gregory, K., Dimitrios, P., 2018. Direct Hydrogen Fuel Cell Electric Vehicle Cost Analysis: System and High-Volume Manufacturing Description, Validation, and Outlook. J. Power Sources.399, 304–13. doi: 10.1016/j.jpowsour.2018.07.100.
Thuyavan, Y., Lukka, Juhana, J., Ahmad, F.I., Pei, S.G., Mohd, H.B.M., Mohamad, F.R.H., Arthanareeswaran, G., Jerome, P., 2022. Polyaniline Decorated Graphene Oxide on Sulfonated Poly (Ether Ether Ketone) Membrane for Direct Methanol Fuel Cells Application. Polym Adv Technol. 33, 66–80. doi: 10.1002/pat.5491.
Vincent, I., Eun, C.L., Hyung, M.K., 2020. Solutions to the Water Flooding Problem for Unitized Regenerative Fuel Cells: Status and Perspectives. RSC Adv.10(29),16844–60. doi:10.1039/d0ra00434k
Vishwanathan, A. S., 2021. Microbial Fuel Cells: A Comprehensive Review for Beginners.  3 Biotech.11(5). doi: 10.1007/s13205-021-02802-y
Wang, Y.J., Baizeng, F., Xiaomin, W., Anna, I., Yuyu, L., Aijun, L., Lei, Z., Jiujun, Z., 2018. Recent Advancements in the Development of Bifunctional Electrocatalysts for Oxygen Electrodes in Unitized Regenerative Fuel Cells (URFCs). Prog. Mater. Sci. 98,108–67. doi: 10.1016/j.pmatsci.2018.06.001.
Wang, Y., Shixue, W., Guozhuo, W., Like, Y., 2018. Numerical Study of a New Cathode Flow-Field Design with a Sub-Channel for a Parallel Flow-Field Polymer Electrolyte Membrane Fuel Cell. Int. J. Hydrogen Energy. 2359–68.                                              doi: 10.1016/j.ijhydene.2017.11.172.
Wang, Y., Hao, Y., Andrew, M., Patrick, H., Hui, X., Fred, R.B., 2021. Polymer Electrolyte Membrane Fuel Cell and Hydrogen Station Networks for Automobiles: Status, Technology, and Perspectives. Adv. Appl. Energy. 2.                                                   doi: 10.1016/j.adapen.2021.100011
Wu, C. W., Zhang, W., Han, X.Y., Zhang, X., Ma, G. J., 2020. A Systematic Review for Structure Optimization and Clamping Load Design of Large Proton Exchange Membrane Fuel Cell Stack. J. Power Sources. 476, 228724.                                         doi: 10.1016/j.jpowsour.2020.228724.
Wu, D., Chao, P., Cong, Y., Hao, T., 2020. Review of System Integration and Control of Proton Exchange Membrane Fuel Cells. Electrochem. Energy Rev.3(3), 466–505.    doi: 10.1007/s41918-020-00068-1.
Xu, B., Dongxu, L., Zheshu, M., Meng, Z., Yanju, L., 2021. Thermodynamic Optimization of a High Temperature Proton Exchange Membrane Fuel Cell for Fuel Cell Vehicle Applications. Mathematics. 9(15). doi: 10.3390/math9151792.
Xu, Q., Zengjia, G., Lingchao, X., Qijiao, H., Zheng, L., Idris, T.B., Keqing, Z., Meng, N., 2022. A Comprehensive Review of Solid Oxide Fuel Cells Operating on Various Promising Alternative Fuels. Energy Convers. Manag. 253.                                          doi: 10.1016/j.enconman.2021.115175.
Yang, Z., Changming, Z., Yunteng, Q., Huang, Z., Fangyao, Z., Jing, W., Yuen, W., Yadong, L., 2019. Trifunctional Self‐Supporting Cobalt‐Embedded Carbon Nanotube Films for ORR, OER, and HER Triggered by Solid Diffusion from Bulk Metal. Adv. Mater. 31(12),1808043. doi: 10.1002/adma.201808043.
Youssef, M. E.S., Amin, R. S., El-Khatib, K. M., 2018. Development and Performance Analysis of PEMFC Stack Based on Bipolar Plates Fabricated Employing Different Designs. Arab. J. Chem. 11(5),609–14. doi: 10.1016/j.arabjc.2015.07.005.
Yu, Y., Jian, Z., Zhimei, S., 2020. Novel 2D Transition‐Metal Carbides: Ultrahigh Performance Electrocatalysts for Overall Water Splitting and Oxygen Reduction. Adv. Funct. Mater.30(47), 2000570. doi: 10.1002/adfm.202000570.
Zhang, J., Manuela, T., Nat, G., Olga, M., Nariaki, V. N., Spiros, P., Fang, S., Bojan, V., Yuming, W., David, W., Mihir, I. D., Karin, D., Nina, D., Mateja, D., Xueshang, F., Stephan, G. H., Monica, L., Noé, L., Bin, Z., 2021. Earth-Affecting Solar Transients: A Review of Progresses in Solar Cycle 24. Prog. Earth Planet. Sci. 8(1), 56. doi: 10.1186/s40645-021-00426-7.
Zhang, Y., Mingchuan, L., Yong, Y., Yiju, L., Shaojun, G., 2019. Advanced Multifunctional Electrocatalysts for Energy Conversion. ACS Energy Lett.4(7),1672–80.                     doi: 10.1021/acsenergylett.9b01045.
Zhou, S., Xiaowei, Y., Wei, P., Nanshu, L., Jijun, Z., 2018. Heterostructures of MXenes and N-Doped Graphene as Highly Active Bifunctional Electrocatalysts. Nanoscale.10(23),10876–83. doi: 10.1039/C8NR01090K.