Low Salinity Water Flooding (LSWF), Can We Move Forward? The Economic Case

Document Type : Engineering Advances


1 Federal University of Ceará

2 1938 Harney St. Suite 255

3 2601 Scott Ave. Suite 300


Low-salinity water flooding (LSWF) is a technique used in both improved oil recovery (IOR) and enhanced oil recovery (EOR) and may be employed at any stage of hydrocarbon production. The use of LSWF is very desirable because of the low cost of operations, lack of environmental impact, and industry-wide experience with water injection during secondary recovery. Indeed, LSWF has become a favorite topic for both academic and industry researchers with hundreds of scientific papers written.  Despite the volume of research into LSWF, standard industrial processes and lab tests that typically go with a standard production technique are still lacking. The first successful field test was in 2004, but nearly two decades later there are still few field projects because the technique is perceived as experimental rather than operational. Here, it is suggested that there is sufficient knowledge to screen and test candidate reservoirs, assess the economics, and use LSWF on a broader scale rather than continuing to conduct iterative cycles of experimental investigations. In addition to providing a thorough economic analysis of a multi-field LSWF project, we provide and discuss the current terminologies, favorable conditions, and screening techniques.

Graphical Abstract

Low Salinity Water Flooding (LSWF), Can We Move Forward? The Economic Case


- Summary of the performance to date of low salinity water flooding for laboratory and field.

- Current industry process of assessing and implementing the technique.

- Basis for formulating a traditional screening tool.

- Economic evaluation of the process on the field scale.


Main Subjects

Abulla, F., Hashem, H.S., Abdulraheem, B., Al-Naqi, M., Al-Qattan, A., John, H., Cunningham, P.R.P., Briggs, P.J., Thawer, R. 2012. First EOR trial using low salinity water injection in the Greater Burgan field, Kuwait. In SPE, Society of Petroleum Engineers: Vol. 164341. https://doi.org/10.2118/164341-MS
Adityawarman, A., Aziz, F. A., Aziz, P. A., Yusgiantoro, P.,  Chandra, S. 2020. Economic Evaluation of Fiscal Regime on EOR Implementation in Indonesia: A Case Study of Low Salinity Water Injection on Field X . J.Earth Ene Eng, 9(1), 18-36. https://doi.org/10.25299/jeee.2020.4608
Afekare, D., Radonjic, M. 2017. From mineral surfaces and coreflood experiments to reservoir implementations:  Comprehensive review of low salinity water flooding (LSWF). Energy Fuels, 31(12) 13043-13062. https://doi.org/10.1021/acs.energyfuels.7b02730
Aghaeifar, Z., Strand, S., Austad, T., Puntervold, T., Aksulu, H., Navratil, K., Storas, S., and D. Hamso, 2015. Influence of formation water salinity/composition on the low-salinity enhanced oil recovery effect in high-temperature sandstone reservoirs.  Energy Fuel, 29, 4747-4754. https://doi.org/10.1021/acs.energyfuels.5b01621
Alagic, E., Skauge, A. 2010. Combined low salinity brine injection and surfactant flooding in mixed-wet sandstone cores.  Energy Fuels, 24, 3551-3559. https://doi.org/10.1021/ef1000908
Al-Attar, H.H., Mahmound, M.Y., Zekri, A.Y., Almehaideb, R., Ghannam, M. 2013. Low-salinity flooding in a selected carbonate reservoir:  experimental approach. J. Pet. Explor. Prod. Tech. 3, 139-149. https://doi.org/10.1007/s13202-013-0052-3
Aljuboori, F.A., Lee, J.H., Elraies, K.A., Stephen, K.D. 2020. The effectiveness of low salinity waterflooding in naturally fractured reservoirs. J. Petrol. Sci. Eng. 191,, 107167. https://doi.org/10.1016/j.petrol.2020.107167
Al-Murayri M T, Hassan A A, Abdullah M B, Abdulrahim A M, Marlière C, Hocine S, Tabary R. 2018. Surfactant/Polymer flooding: chemical-formulation design and evaluation for raudhatain lower burgan reservoir, Kuwait. SPE Reservoir Eval Eng, 22 (03), 923-940. https://doi.org/10.2118/183933-PA
Al-Murayri, M.T., Al-Mayyan, H.E., Raraj, A.A., Abdullah, M.B., Pitts, M., Wyatt, K. 2017. Evaluation of enhanced oil recovery for Sabriyah lower Burgan reservoir Kuwait.  In SPE, Society of Petroleum Engineers:, Vol. SPE 186026. https://doi.org/10.2118/186026-MS
Alotaibi, M.B., Nasr-El Din, H.A. 2010. Effect of Brine Salinity on Reservoir Fluids Interfacial Tension.  In SPE, Society of Petroleum Engineers:, Vol. SPE 121569. https://doi.org/10.2118/121569-MS
Alshakhs, M. J., BuKhamseen, N. Y., AlGarni, S. A. 2020. Paradigm Shift in Smartwater Simulation Methods. In SPE, Society of Petroleum Engineers:, Vol. IPTC-19796-MS. https://doi.org/10.2523/IPTC-19796-MS
Al-Shalabi, E.W., Sepehrnoori, K. and G. Pope, 2014. Mysteries behind the low salinity water injection technique.  J. Pet. Eng. 304-312, 11p. https://doi.org/10.1155/2014/304312
Al-Shalabi, E.W., Sepehmoori, K. 2016. A comprehensive review of low salinity/engineered water injections and their application to sandstone and carbonate rocks. J. Pet. Sci. Eng., 139, 137-161. https://doi.org/10.1016/j.petrol.2015.11.027
Al-Shalabi, E.W., Sepehrnoori, K., Delshad, M. 2014. Optimization of the low salinity water injection process in carbonate reservoirs.  In SPE, Society of Petroleum Engineers, Vol. IPTC 17821-MS. https://doi.org/10.2523/IPTC-17821-MS
Alvarado, V., Garcia-Olvera, G., Hoyer, P., Lehmann, T.E. 2014. Impact of polar components on crude oil-water interfacial film formation: A mechanisms for low-salinity waterflooding.  In SPE, Society of Petroleum Engineers, Vol. SPE 170807. https://doi.org/10.2118/170807-MS
Ashraf, N.J., Hadia,, Torsæter, O., Tweheyo, and M.T. 2010. Laboratory Investigation of Low Salinity Waterflooding as Secondary Recovery Process: Effect of Wettability. In SPE, Society of Petroleum Engineers:, Vol. SPE 129012. https://doi.org/10.2118/129012-MS
Austad, T., RezaeiDoust, A., Puntervold, T. 2010. Chemical Mechanism of Low Salinity Water Flooding in Sandstone Reservoirs.  In SPE, Society of Petroleum Engineers:, Vol. SPE 129767. https://doi.org/10.2118/129767-MS
Awolayo, A.N., Sarma, H.K., Nghiem, L.X. 2018. Brine-dependent recovery processes in carbonate and sandstone reservoirs: Review of laboratory-field studies, interfacial mechanisms and modeling attempts. Energies, 11, 1-60. https://doi.org/10.3390/en11113020
Ayirala, S.C., Yousef, A.A. 2013. Injection water chemistry requirement guidelines for IOR/EOR.  In SPE, Society of Petroleum Engineers, Vol. SPE 169048-MS. https://doi.org/10.2118/169048-MS
Bartels, W.-B., Mahani, H., Berg, B., Hassanizadeh, S.M.. 2019. Literature review of low salinity waterflooding from a length and time scale perspective. Fuel, 236, 338-353. https://doi.org/10.1016/j.fuel.2018.09.018
Bassir, S.M., Zargar, G., Moghadasi, J., Roghanian, R. 2016. A comprehensive review of low salinity waterflooding in sandstone/carbonate reservoirs:  From theory to practice. OGPD Conference, 21p.                
Batias, J., Hamon G., Lalanne, B., Romero, C. 2009. Field and laboratory observations of remaining oil saturations in a light oil reservoir flooded by a low salinity aquifer. In SCA, Society of Core Analysts, Vol. SCA 2009-1.
Berg, S., Cense, A.W., Jansen, E., Bakker, K. 2009. Direct experimental evidence of wettability modification by low salinity.  In SCA, Society of Core Analysts, Vol.                                                                                                                              2009-12.
Beygi, M. R.  2016. Development of compositional three-phase relative permeability and hysteresis models and their application to EOR processes, Ph.D. Dissertation, 380P. http://hdl.handle.net/2152/45556
Brady, P.V., Krumhansi, J.L., Mariner, P.E. 2012. Surface complexation modeling for improved oil recovery. In SPE, Society of Petroleum Engineers, Vol.153744. https://doi.org/10.2118/153744-MS
Brady, P.V., Morrow, N.R., Fogden, A., Deniz, V., Loahardjo, N., Winoto, 2015. Electrostatics and the low salinity effect in sandstone reservoirs.  Energy Fuels, 29, 666-677. https://doi.org/10.1021/ef502474a
Callegaro, C.  Bartosek, M., Masserano, F., Nobili, M., Parracello, V.P., Pizzinelli, C.S., Caschili, A. 2013. Opportunity of enhanced oil recovery low salinity injection:  From experimental work to simulation study up to field proposal.  In SPE, Society of Petroleum Engineers, SPE 164827. https://doi.org/10.2118/164827-MS
Chavan, M., Dandekar, A., Patil, S., Khataniar, S. 2019. Low-salinity-based enhanced oil recovery literature review and associated screening criteria. Petroleum Science  1-17. https://doi.org/10.1007/s12182-019-0325-7
Chavez-Miyauchi, T.E. , Lu, Y., Firoozabadi, A. 2017. Low salinity water injection : Effect of acid and base functionality on recovery performance.  In SPE, Society of Petroleum Engineers, Vol. SPE 187275-MS. https://doi.org/10.2118/187275-MS
Chen, J., Hirasik, G.J., Flaum, M. 2004. Effects of OBM invasion on irreducible water saturation:  Mechanisms and modifications of NMR interpretation.  In SPE, Society of Petroleum Engineers, Vol. SPE 90141. https://doi.org/10.2118/90141-MS
Cissokho, M., Boussour, S. Cordier, Ph. Bertin, H. and Hamon, G.. 2009. Low Salinity Oil Recovery on Clayey Sandstone: Experimental Study.  In SCA, Society of Core Analysts, Vol. SCA2009-05.
Dang, C.T.Q., Nghiem, L.X., Chen, Z., Nguyen, Q.P., Nguyen, N. 2013. State-of-the art low salinity waterflooding for enhanced recovery. SPE 165903, 12p. https://doi.org/10.2118/165903-MS
Derkani, M., Fletcher, A., Abdallah, W., Sauerer, B., Anderson, J., Zhang, Z. 2018. Low salinity waterflooding in carbonate reservoirs:  Review of interfacial mechanisms. Colloids and Interfaces, 2 (2), 1-43. https://doi.org/10.3390/colloids2020020
Ding, H., Ranman, S. 2017. Experimental and theoretical study of wettability alteration during low salinity water flooding-a state of the art review. Colloids and Surfaces A. Physicochem. Eng. Aspects, 520, 622-639. https://doi.org/10.1016/j.colsurfa.2017.02.006
Emadi, A., Sohrabi, M. 2013. Visual Investigation of Oil Recovery by LowSalinity Water Injection: Formation of Water Micro-Dispersions and Wettability Alteration.  In SPE, Society of Petroleum Engineers, Vol. SPE 166435. https://doi.org/10.2118/166435-MS
Erke, S.I., Volokitin, Y.E., Edelman, I.Y., Karpan, V.M., Nasralla, R.A., Bondar, M.Y., Mikhaylenko, E.E., Evseeva, M.  2013. Low salinity flooding trial at West Salyn field. In SPE, Society of Petroleum Engineers, Vol. SPE 179629-MS. https://doi.org/10.2118/179629-MS
Fani, M., Al-Hadrami, H., Pourafshary, P. Vakili-Nezhadd, G., Mosavat, M. 2018. Optimization of smart water flooding in carbonate reservoir.  In SPE, Society of Petroleum Engineers, Vol. SPE 193014-MS. https://doi.org/10.2118/193014-MS
Fathi, S. J., Austad, T., and Strand, S. 2011. Water-Based Enhanced Oil Recovery (EOR) by Smart Water: Optimal Ionic Composition for EOR in Carbonates. Energy Fuels, 25, (11), 5173-5179. https://doi.org/10.1021/ef201019k
Fathi, S. J., Austad, T., Strand, S. 2010. Smart Water as a Wettability Modifier in Chalk: The Effect of Salinity and Ionic Composition. Energy Fuels, 24 (4), 2514-2519. DOI:10.1021/ef901304m
Fjelde, I., Asen, S.M., Omekeh, A. 2013. Low salinity water flooding experiments and interpretation by simulations.  In SPE, Society of Petroleum Engineers:, Vol. SPE 154142. https://doi.org/10.2118/154142-MS
Fjelde, I., Omekeh, A.V., Haugen, P.E. 2018. Screening of the potential injection water compostions to alter wettability to more water-wet.  In SPE, Society of Petroleum Engineers:, Vol. SPE 184918-MS. https://doi.org/10.2118/184918-MS
Fogden, A., Kumar, M., Morrow, N., Buckley, J. 2011. Mobilization of fine particles during flooding of sandstones and possible relations to enhanced oil recovery. Energy Fuels, 25, 1605-1616. https://doi.org/10.1021/ef101572n
Fredriksen, S.B., Rognmo, A.U., Ferno, M.A.  2016. Pore-scale mechanisms during low salinity waterflooding:  Oil mobilization by diffusion and osmosis. J. Pet. Sci. Eng., 16, 650-660. https://doi.org/10.1016/j.petrol.2017.10.022
Gachuz-Muro, H., Sohrabi, M., Benavente, D., 2016. Natural generation of acidic water sas a cause of dissolution of the rock during smart water injection in heavy oil carbonate reservoirs. In SPE, Society of Petroleum Engineers, Vol. SPE 181167-MS.  https://doi.org/10.1021/acs.energyfuels.7b02163
Gamage, P., Thyne, G. 2011. Comparison of Oil Recovery by Low Salinity Waterflooding in secondary and Tertiary Recovery Modes, In SPE, Society of Petroleum Engineers, Vol. SPE 147375. https://doi.org/10.2118/147375-MS
Hadia, N., Lehne, H.H., Kumar, B., Selboe, K., Stense, J.A., Torsaeter, O. 2011. Laboratory investigation of low salinity waterflooding on reservoir rock sample for the Frøy field.  In SPE, Society of Petroleum Engineers:, Vol. SPE 141114. https://doi.org/10.2118/141114-MS
Hamouda, A.A., Valderhaug, O.M. 2014. Investigating enhanced oil recovery from sandstone by low-salinity water and fluid/rock interaction.  Energy Fuels, 28, 898-908. https://doi.org/10.1021/ef4020857
Haynes, A. K., Clough, M. D., Fletcher, A. J. P., & Weston, S. 2013. The Successful Implementation of a Novel Polymer EOR Pilot in the Low Permeability Windalia Field. In SPE, Society of Petroleum Engineers:, Vol. SPE 165253-MS. https://doi.org/10.2118/165253-MS
Hegdal, T., & Pinchin, D.  2014. Subsea Water Treatment and Injection for IOR and EOR. In SPE, Society of Petroleum Engineers, Vol.25465-MS. https://doi.org/10.4043/25465-MS
Hegdal, T., & Pinchin, D. 2015. Subsea Membrane Water Treatment Progresses Towards Application. In SPE, Society of Petroleum Engineers, Vol. 25833-MS. https://doi.org/10.4043/25833-MS
Hegdal, T., Haruna, S., Sveberg, K. 2020. Fully Integrated Subsea Sulfate Removal and Low Salinity Plant for IOR and EOR. In SPE, Society of Petroleum Engineers, Vol. 30832-MS. https://doi.org/10.4043/30832-MS
Hiorth, A., Cathles, L.M., Madland, M.V. 2010. The impact of pore water chemistry on carbonate surface charge and oil wettability.  Transp. Porous Med. 85, 1-21. https://doi.org/10.1007/s11242-010-9543-6
Hols, A. and Bethel, F.T., 1957, Discussion of reservoir characteristics, Cedar Creek Aniticline, Montana.  J. Pet. Tech. 9 (12), 23-30. https://doi-org.libproxy.uwyo.edu/10.2118/858-G
Jackson, M.D., Vinogradova, J., Hamon, G., Chameroisc, M., 2016. Evidence, mechanisms and improved understanding of controlled salinity waterflooding part 1: Sandstones. Fuel, 185, 772-793. https://doi.org/10.1016/j.fuel.2016.07.075
Jarrell, P.M., Fox, C.E., Stein, M.H., Webb, S.L. 2002. Practical Aspects of CO2 Flooding. SPE Monograph, Volume 220 p. https://doi.org/10.2118/9781555630966
Jerauld, G.R., Lin, C.Y., Webb, K.J., Seccombe, J.C. 2008. Modeling Low-Salinity Waterflooding.  SPE Res. Eval. Eng, 11(6), 1000-1012. https://doi.org/10.2118/102239-PA
Jiang, H., Chopping, C., Forsman, C., Xie, X. 2014. Lab observation of low salinity waterflooding for a Phosphoria reservoir rock. In SPE, Society of Petroleum Engineers, Vol. SPE 169546-MS. https://doi.org/10.2118/169546-MS
Katende, A., Sagala, F. 2019. A critical review of low salinity water flooding: Mechanism, laboratory and field application. J. Molecular Liquids, 278, 627-649. https://doi.org/10.1016/j.molliq.2019.01.037
Kilybay, A., Ghosh, B., Thomas, C. 2017. A review on the progress of ion-engineered water flooding. J. Petro. Eng., 1–9. https://doi.org/10.1155/2017/7171957
Kulathu, S., Dandekar, A.Y., Patil, S., Khattaniar, S. 2013. Low salinity cyclic water floods for enhanced oil recovery on Alaska North Slope. In SPE, Society of Petroleum Engineers, Vol.165812. https://doi.org/10.2118/165812-MS
Kumar, M., Fogden, A., Morrow, N.R., Buckley, J.S. 2010. Mechanisms of improved oil recovery from sandstone by low salinity flooding. In SCA, Society of Core Analysts:, Vol. 2010-25.
Lager, A., Webb, K.J., Black, C.J.J., Sorbie, K.S. 2006. Low-salinity oil recovery – an experimental investigation.  In SCA, Society of Core Analysts:, Vol.                                                                                   2006-36.
Layti, F. 2017. Profitability of Enhanced Oil Recovery.  Economic Potential of LoSal EOR at the Clair Ridge Field, UK, M.S.thesis, 43p. http://hdl.handle.net/11250/2456243
Lee, S.Y., Webb, K.J., Collins, I.R., Lager, A., Clarke, S.M., O’Sullivan, M.O., Routh, A.F., Wang, X. 2010. Low Salinity Oil Recovery – Increased Understanding of the Underlying Mechanisms. In SPE, Society of Petroleum Engineers, Vol. SPE 129722. https://doi.org/10.2118/129722-MS
Ligthelm, D.J., Gronsveld, J., Hofman, J.P., Brussee, N.J., Marcelis, F., van der Linde, H.A. 2009. Novel waterflooding strategy by manipulation of injection brine composition.  In SPE, Society of Petroleum Engineers, Vol. SPE 119835. https://doi.org/10.2118/119835-MS
Liu, Z., Liang, Y, Wang, Q., Guo,Y., Gao, M., Wang, Z., Liu, W. 2020. Status and progress of worldwide EOR field applications. J. Petrol. Sci. Eng., 193, 1-32. https://doi.org/10.1016/j.petrol.2020.107449
Lüftenegger, M., Kadnar, R., Puls, C.,  Clemens, T. 2016. Operational Challenges and Monitoring of a Polymer Pilot, Matzen Field, Austria. In SPE, Society of Petroleum Engineers, Vol. 174350-PA. https://doi.org/10.2118/174350-MS
Mahani, H., Berg, S., Ilic, D., Bartels, W.-B., Joekar-Niasar, V. 2013. Kinetics of the low salinity waterflooding effect studied in a model system.  In SPE, Society of Petroleum Engineers, Vol. SPE 165255. https://doi.org/10.2118/165255-MS
Manrique, E., Wright, J.D. 2006. Screening methods help operators identify viable EOR opportunities.  Amer. O&G Reporter, June.
McGuire, P. L., Chatham, J. R., Paskvan, F. K., Sommer, D. M., F. H. Carini, F.H. 2005. Low salinity oil recovery: an exciting new EOR opportunity for Alaska's North Slope.  In SPE, Society of Petroleum Engineers, Vol. SPE 93903. https://doi.org/10.2118/93903-MS
Moeini, F., Hemmari-Saraparadeh, A., Ghazanfari, M-H., Masihi, M., Ayatollahi, S. 2014. Toward mechanistic understanding of heavy crude oil/brine interfacial tension:  The roles of salinity, temperature and pressure. Fluid Phase Equilibria, 175, 191-200. https://doi.org/10.1016/j.fluid.2014.04.017
Muriel, H., Ma, S., Sofla, S. J. D., & James, L. A. 2020. Technical and Economical Screening of Chemical EOR Methods for the Offshore. In SPE, Society of Petroleum Engineers:, Vol. OTC-30740-MS. https://doi.org/10.4043/30740-MS
Mwangi, P., Brady, P.V., Radonjic, M., Thyne, G. 2018. The effect of organic acids on wettability of sandstone and carbonate rocks. J. Petrol. Sci. Eng, 165 428-435. https://doi.org/10.1016/j.petrol.2018.01.033
Patil, S. Dandekar, A.Y., Patil, S.L., Khataniar, S.  2008. Low salinity brine injection for EOR on Alaska North Slope (ANS). In IPTC, International Petroleum Technology Conference, Vol. 12004. https://doi.org/10.2523/IPTC-12004-MS
Person, M., Wilson, J.L., Morrow, N., Post, V.E.A. 2017. Continental-shelf freshwater resources and improved oil recovery by low-salinity waterflooding.  AAPG Bull, 101, 1-18. https://doi.org/10.1306/05241615143
Pinerez, T., Dario, I., Puntervold, T., Strand, S. 2017. Impact of temperature on the low salinity EOR effect for sandstone containing reactive plagioclase.  J. Pet. Sci. Eng., 156, 102-109. https://doi.org/10.1016/j.petrol.2017.05.014
Pu, H., Xie, X., Yin, P., Morrow, N.R. 2018. Application of Coalbed Methane Water to Oil Recovery from Tensleep Sandstone by Low Salinity Waterflooding. In SPE, Society of Petroleum Engineers:, Vol. SPE 113410. https://doi.org/10.2118/113410-MS
Pu, H., Xie, X., Yin, P., Morrow, N.R. 2010. Low Salinity Waterflooding and Mineral Dissolution.  In SPE, Society of Petroleum Engineers:, Vol.SPE 134042. https://doi.org/10.2118/134042-MS
Purswani, P., Tawfik, M., Karpyn, Z. 2017. Factors and mechanisms governing wettability alteration by chemically tuned waterflooding:  A review. Energy Fuels, 31 (8), 7734-7745. https://doi.org/10.1021/acs.energyfuels.7b01067
Reddick, C., Buikema, T., Williams, D. 2012. Managing risk in the deployment of new technology – Getting LoSal EOR into the business.  In SPE, Society of Petroleum Engineers, Vol. SPE 179629-MS. SPE 153993. https://doi.org/10.2118/153933-MS
RezaeiDoust, A., Puntervold, T., Austad, T. 2010. A discussion of the low salinity EOR potential for a North Sea sandstone field. In SPE, Society of Petroleum Engineers, Vol. SPE 134459. https://doi.org/10.2118/134459-MS
RezaeiDoust, A., Puntervold, T., Austad, T. 2010. Smart water as wettability modifier in carbonate and sandstone: A discussion of the similarities/differences in the chemical mechanisms. Energy Fuels, 23, 4479-4485. https://doi.org/10.1021/ef900185q
RezaeiDoust, A., Puntervold,T.,Austad, T. 2011. Chemical verification of the EOR mechanism by using low saline/smart water in sandstone.  Energy Fuels, 25, 2151-2162. https://doi.org/10.1021/ef200215y
Robbana, E., Buikemia, T., Mair, D., Mercer, D., Webb, K., Hewson, A.  Reddick, C. 2012. Low salinity enhanced oil recovery – Laboratory to day one field implementation – LoSal EOR into the Clair Ridge project. In SPE, Society of Petroleum Engineers, Vol. SPE 161750. https://doi.org/10.2118/161750-MS
Romanuka. J., Hofman, J.P., Ligthelm, D.J., Suijkerbuijk, B.M., Marcelis, A.H., Oedai, S., Brusse, N.J., van der Linde, H.A., Aksulu, H., Austad, T. 2012. Low salinity EOR in carbonates. In SPE, Society of Petroleum Engineers, Vol. SPE 153869. https://doi.org/10.2118/153869-MS
Romero, M.I., Gamage, P., Jiang, H., Chopping, C., Thyne, G. 2013. Study of low-salinity waterflooding for single- and two-phase experiments in Berea sandstone cores.  J. Pet. Sci Eng., 110, 149-154. https://doi.org/10.1016/j.petrol.2013.08.050
Rontondi, M., Callegaro, C., Masserano, F., Bartosek, M. 2014. Low salinity water injection:  Eni’s experience. In SPE, Society of Petroleum Engineers, Vol. SPE 171794. https://doi.org/10.2118/171794-MS
Sadeed, A., Tariq, Z., Janjua, A.M., Asad, A., Hossain, M.E. Smart water flooding:  An economic evaluation and optimization.  In SPE, Society of Petroleum Engineers: 2018, Vol. SPE 192330-MS. https://doi.org/10.2118/192330-MS
Nasralla. R.A., van der Linde, H.A., Marcelis, F., Mahani, H., Masalmeh, S.K., Sergienko, E., Brusse, N.J., Pieterse, G.J., Basu, S. 2016. Low salinity waterflooding for a carbonate reservoir experimental evaluation and numerical interpretation. In SPE, Society of Petroleum Engineers, Vol. SPE 183086-MS. https://doi.org/10.1016/j.petrol.2018.01.028
Sanaei, A. 2019.Compositional Reactive-Transport Modeling of Engineered Waterflooding. Ph.D. Dissertation, 457P. https://hdl.handle.net/2152/86824
Sandgren, K., Tweheyo, M.T., Raphaug, M., Kjohamar, A., Crescente, C., Kippe, V. 2011. Experimental evidence of low salinity water flooding yielding a more oil-wet behavior.  In SCA, Society of Core Analysts, Vol. SCA 2011-16.
Sari, A., Xie, Q., Chen, Y., Saeed, A., Pooryousefry, E. 2017. Drivers of low salinity effect in carbonate reservoirs. Energy Fuels, 31, 8951-8958. https://doi.org/10.1021/acs.energyfuels.7b00966
Seccombe, J., Lager, A., Jerauld, G., Jhaveri, B., Buikema, T., Bassler, S., Denis, J., Webb, K., Cockkin, A., Fueg, E., Paskvan, F. 2010. Demonstration of low-salinity EOR at interwell scale, Endicott field, Alaska. In SPE, Society of Petroleum Engineers, Vol. SPE 129692. https://doi.org/10.2118/129692-MS
Seccombe, J., Lager, A., Webb, K., Fueg, E. 2008. Improved Waterflood Recovery: LoSal™ EOR Field Evaluation. In SPE, Society of Petroleum Engineers, SPE 113480. https://doi.org/10.2118/113480-MS
Shariatpanahi, S.F., Strand, S., Austad, T. 2011. Initial Wetting Properties of Carbonate Oil Reservoirs: Effect of the Temperature and Presence of Sulfate in Formation Water. Energy Fuels, 25 (7): 3021-3028. https://doi.org/10.1021/ef200033h
Sheng, J. J. 2014. Critical review of low-salinity waterflooding. J. Pet. Sci. Eng, 120, 216−224. https://doi.org/10.1016/j.molliq.2019.01.037
Skrettlingland, K., Holt, T., Tweheyo, M. T., Skjevrak, I. 2010. Snorre low salinity water injection – core flooding experiments and single well field pilot.  In SPE, Society of Petroleum Engineers, Vol. SPE 129877. https://doi.org/10.2118/129877-PA
Sohal, M.A., Thyne, G., Søgaard, E. G.. 2016a. Review of recovery mechanisms of ionically modified waterflood in carbonate reservoirs.  Energy Fuels, 30, 1904-1914. https://doi.org/10.1021/acs.energyfuels.5b02749
Sohal, M.A., Thyne, G., Søgaard, E.G. 2016b. A novel application of the flotation technique to measure the wettability changes by ionically modified water for improved oil recovery in carbonates. Energy Fuels, 30, 6306-6320. https://doi.org/10.1021/acs.energyfuels.6b01008
Sohal, M.A., Thyne, G., Søgaard, E.G. 2017. Effects of temperature on wettability and optimum wetting conditions for maximum oil recovery in carbonate reservoir systems.  Energy Fuels, 31, 3557-3566. https://doi.org/10.1021/acs.energyfuels.6b02612
Sohrabi, M., Mahzari, P., Farzaneh, S.A., Mills, J.R., Tsolis, P., Ireland, S. 2016. Novel insights into mechanisms of oi recovery by use of low-salinity -water injection. In SPE, Society of Petroleum Engineers, Vol. SPE172778. https://doi.org/10.2118/172778-MS
Sorbie, K., I.R. Collins, I.R. 2010. A Proposed Pore-Scale Mechanism for How Low Salinity Waterflooding Works.  In SPE, Society of Petroleum Engineers:, Vol. SPE 129833. https://doi.org/10.2118/129833-MS
Sorop, T.G., Suijkerbuijk, B.M.J.M., Masalmeh, S.K., Looijer, M.T., Parker, A.R., Dindoruk, D.M., Goodyear, S.G., Al-Qarshubi, I.S.M. 2013. Integrated approach in deploying low salinity waterflooding.  In SPE, Society of Petroleum Engineers, Vol. SPE 165277. https://doi.org/10.2118/165277-MS
Strand, S., Puntervold, T, Austad. T. 2016. Water based EOR from clastic oil reservoir by wettability alteration:  A review of chemical aspects. J. Pet. Sci. Eng, 146, 1079-1091. https://doi.org/10.1016/j.petrol.2016.08.012
Suijkerbuijk, B.M.J.M.,Kuipers, H.P.C.E., van Kruijsdijk, C.P.J.W., Berg, S., van Winden, J.F., Ligthelm, D.J., Mahani, H., Almada, M.P., Vanden Pol, E., Niasar, V.J., Romanuka, J., Vermolen, E.C.M., and I.S.M. Al-Qarshubi, 2013a, the development of a workflow to improve capability of low salinity response. In IPTC, International Petroleum Technology Conference, Vol. IPTC 17157. https://doi.org/10.2523/IPTC-17157-MS
Suijkerbuijk, B.M.J.M., Horman, J.P, Ligthelm, D.J., Romanuka, J., Brussee, N., van der Linde, H.A., Marcelis, A.H.M. 2012. Fundamental investigations into wettability and low salinity flooding by parameter isolation.  In SPE, Society of Petroleum Engineers, Vol. SPE 154204. https://doi.org/10.2118/154204-MS
Suijkerbuijk, B.M.J.M., Sorop, T.G., Parker, A.R., Maslmeh, D.K., Chnuzh, I.V., Karpan, V.M., Volokitim, Y.E., Skripkin, A.G. 2013b. Low salinity waterflooding at West Salym:  Laboratory experiments and field forecasts. In SPE, Society of Petroleum Engineers:, Vol. SPE 169102-MS. https://doi.org/10.2118/169102-MS
Taber, J.J., Martin, F.D., Seright, R.S. 1997a. EOR screening criteria revisited- Part 1:  Introduction to screening criteria and enhanced recovery field projects.  SPE Reservoir Eng, August, 189-198. https://doi.org/10.2118/35385-PA
Taber, J.J., Martin, F.D., Seright, R.S. 1997b. EOR screening criteria revisited- Part 2:  Applications and impact of oil prices.  SPE Reservoir Eng, August, 199-205. https://doi.org/10.2118/39234-PA
Tang, G-Q., Morrow, N.R. 1999. Influence of brine composition and fines migration on crude oil/brine/rock interactions and oil recovery.  J. Pet. Sci. Eng., 24, 99-111. https://doi.org/10.1016/S0920-4105(99)00034-0
Tang, G-Q., Morrow, N.R. 1997. Salinity, Temperature, Oil Composition, and Oil Recovery by Waterflooding.  SPE Reservoir Engineering, November, 269-276. https://doi.org/10.2118/36680-PA
Teklu, T.W., Alameri, W., Graves, R.M., Kazemi, H., AlSumaiti, A.M. 2016. Low-salinity water-alternating EOR. J. Pet. Sci. Eng, 142, 101-118. https://doi.org/10.1016/j.petrol.2016.01.031
Thyne, G., Gamage, P. 2011. Evaluation of the Effect of Low Salinity Waterflooding for 26 Fields in Wyoming, In SPE, Society of Petroleum Engineers, Vol. SPE 147410. https://doi.org/10.2118/147410-MS
Thyne, G. 2016. Wettability alteration in reservoirs:  How it applies to Alaskan oil production. In SPE, Society of Petroleum Engineers, Vol. SPE 180370-MS. https://doi.org/10.2118/180370-MS
Vledder, P., Fonseca, J. C., Wells, T. Gonzalez, I., Ligthelm, D. 2010. Low salinity water flooding:  Proof of wettability alteration on a field scale. In SPE, Society of Petroleum Engineers, Vol. SPE 129564. https://doi.org/10.2118/129564-MS
Webb, K.J., Black, C.J.J., Al-Ajell, H. 2006. Low salinity oil recovery – log-inject-log.  In SPE, Society of Petroleum Engineers, Vol. SPE 81460. https://doi.org/10.2118/81460-MS
Wideroee, H.G., Ruelaatten, H., Boassen, T., Crescente, CM, Raphaug, M., Soerland, G.H., Urkedal, H. Investigation of low salinity water flooding by NMR and CRYOSEM.  In IPTC, International Petroleum Technology Conference: 2010, Vol. IPTC 17157.
Yang, J., Dong, Z., Lin, M. 2015. The impact of brine composition and salinity on the wettability of sandstone. Petroleum Sci. Tech, 33(4), 430-436. https://doi.org/10.1080/10916466.2014.990093
Yousef, A. A., Al-Salehsalah, S. H., Al-Jawfi, M. S. 2011. New Recovery Method for Carbonate Reservoirs through Tuning the Injection Water Salinity: Smart Waterflooding.  In SPE, Society of Petroleum Engineers, Vol. 143550. https://doi.org/10.1080/10916466.2014.990093
Zahid, A., Shapiro, A., Skauge, A. 2012. Experimental study of low salinity water flooding in carbonate reservoirs:  A new promising approach. In SPE, Society of Petroleum Engineers, Vol. 155625. https://doi.org/10.2118/155625-MS
Zeinijahromi, A., Ahmetgareev, V., Ibatullin, R.  Bedrikovetsky, P. 2015. Sensitivity study of low salinity water injection in Zichebashskoe oilfield.  J. Petrol. Gas Eng, 6(1), 10-21. https://doi.org/10.5897/JPGE%202014.0212
Zhang, L., Zhang, J., Wang, Y., Yang, R., Zhang, Y., Gu, J., Zhang, M., Ren, S. 2018. Experimental investigation of low-salinity water flooding in a low permeability oil reservoir.  Energy Fuels, 32, 3108-3118. https://doi.org/10.1021/acs.energyfuels.7b03704
Zhang, Y., Sarma, H. 2012. Improving waterflood recovery efficiency in carbonate reservoirs though salinity variations and ionic exchanges:  A promising low-cost “smart waterflood” approach. In SPE, Society of Petroleum Engineers, Vol. 161631. https://doi.org/10.2118/161631-MS