Grand Challenges in Salinity Gradient Energy Generation

Document Type : Grand Challenges

Authors

1 Atılım University, Turkey

2 Ege University

Abstract

Reverse electrodialysis (RED) generates energy from salinity gradients, such as the one between seawater and river water, by selectively transporting ions through ion-exchange membranes. This paper discusses the challenges facing RED in four areas: ion exchange membranes, stacks, fouling, and processes, although it may not cover all issues as new advancements arise. Although bench-scale RED has impressive power generation, pilot-scale RED operations present challenges for widespread adoption. However, the main advantage of RED lies in its potential for synergetic applications with other processes like energy conversion/storage, wastewater treatment, and desalination. The development of low-cost, innovative membranes and integration processes with high energy efficiency and power generation capabilities for both scaled-up and-down approaches is essential for RED's continued advancement. Dedicated research will contribute to its potential for integration with other processes and viability as a renewable energy source. RED has the potential to be a significant player in the renewable energy market, but new advancements also present new challenges.

Graphical Abstract

Grand Challenges in Salinity Gradient Energy Generation

Highlights

Ø The main challenges of reverse electrodialysis discussed.

Ø New advancements rise to new challenges.

Ø Membrane fabrication at low cost is crucial.

Ø Hybrid process integration is to continue.

 

Keywords

Main Subjects


Altıok, E., Tuğçe Katarzyna Smolinska-Kempisty, Z.K., Güler, E., Kabay, N., Tomaszewska, B., Bryjak, M., 2023. Salinity Gradient Energy Conversion by Custom-Made Interpolymer Ion Exchange Membranes Utilized in Reverse Electrodialysis System. J. Environ. Chem. Eng. 11, 109386. https://doi.org/10.1016/j.jece.2023.109386
Bance-Soualhi, R., Choolaei, M., Franklin, S.A., Willson, T.R., Lee, J., Whelligan, D.K., Crean, C., Varcoe, J.R., 2021. Radiation-Grafted Anion-Exchange Membranes for Reverse Electrodialysis: A Comparison of N,N,N′,N′-Tetramethylhexane-1,6-Diamine Crosslinking (Amination Stage) and Divinylbenzene Crosslinking (Grafting Stage), J. Mater. Chem. A 9(38):22025–38. https://doi.org/10.1039/d1ta05166k.
Besha, A.T., Tsehaye, M.T., Aili, D., Zhang, W., Tufa, R.A., 2020. Design of Monovalent Ion Selective Membranes for Reducing the Impacts of Multivalent Ions in Reverse Electrodialysis. Membranes 10(1):7.
Brogioli, D., Ziano, R., Rica, R.A., Salerno, D., Mantegazza, F., 2013. Capacitive Mixing for the Extraction of Energy from Salinity Differences: Survey of Experimental Results and Electrochemical Models. J. Colloid Interface Sci. https://doi.org/10.1016/j.jcis.2013.06.050
Choi, J., Kim, W.S., Kim, H.K., Yang, S.C., Han, J.H., Jeung, Y.C., Jeong, N.J., 2022. Fouling Behavior of Wavy-Patterned Pore-Filling Membranes in Reverse Electrodialysis under Natural Seawater and Sewage Effluents. npj Clean Water 5(1):1–13. https://doi.org/10.1038/s41545-022-00149-2.
Cosenza, A., Campisi, G., Giacalone, F., Randazzo, S., Cipollina, A., Tamburini, A., Micale, G., 2022. Power Production from Produced Waters via Reverse Electrodialysis: A Preliminary Assessment. Energies 15(11). https://doi.org/10.3390/en15114177
Deboli, F., Van der Bruggen, B., Donten, M.L., 2022. A Versatile Chemistry Platform for the Fabrication of Cost-Effective Hierarchical Cation and Anion Exchange Membranes. Desalination 535(May):115794. https://doi.org/10.1016/j.desal.2022.115794
Fan, H., Huang, Y., Yip, N.Y., 2023. Advancing Ion-Exchange Membranes to Ion-Selective Membranes: Principles, Status, and Opportunities. Frontiers Environ. Sci. Eng. 17(2):1–27. https://doi.org/10.1007/s11783-023-1625-0
Gueorguiev Velizarov, S., Grade Couto da Silva Cordas, D.C.M., Auxiliar, I., 2020. Redox-Free Reverse Electrodialysis Using Capacitive Electrodes for Energy Generation, Mater Dissertation, Universidade NOVA de Lisboa, Portugal.
Güler, E., van Baak, W., Saakes, M., Nijmeijer, K., 2014. Monovalent-Ion-Selective Membranes for Reverse Electrodialysis. J. Membr. Sci. 455. https://doi.org/10.1016/j.memsci.2013.12.054
Güler, E., R. Saakes, E.M., Nijmeijer, K., 2014. Micro-Structured Membranes for Electricity Generation by Reverse Electrodialysis. J. Membr. Sci. 458. https://doi.org/10.1016/j.memsci.2014.01.060.
Güler, E., Elizen, R., Vermaas, D.A., Saakes, M., Nijmeijer, K., 2013. Performance-Determining Membrane Properties in Reverse Electrodialysis. J. Membr. Sci. 446. https://doi.org/10.1016/j.memsci.2013.06.045.
He, Z., Gao, X., Zhang, Y., Wang, Y., Wang, J., 2016. Revised Spacer Design to Improve Hydrodynamics and Anti-Fouling Behavior in Reverse Electrodialysis Processes. Desal. Water Treat. 57(58):28176–86. https://doi.org/10.1080/19443994.2016.1186569
Heintz, A., Wiedemann, E., Ziegler, J., 1997. Ion Exchange Diffusion in Electromembranes and Its Description Using the Maxwell-Stefan Formalism. J. Membr. Sci. 137(1–2):121–32. https://doi.org/10.1016/S0376-7388(97)00185-3
Hsu, J. P., Lin, S.C., Lin, C.Y., Tseng, Sh., 2017. Power Generation by a PH-Regulated Conical Nanopore through Reverse Electrodialysis. J. Power Sources 366:169–77. https://doi.org/10.1016/j.jpowsour.2017.09.022
Hu, J., Xu, Sh., Wu, X., Wu, D., Jin, D., Wang, P., Leng, Q., 2019. Multi-Stage Reverse Electrodialysis: Strategies to Harvest Salinity Gradient Energy. Energy Conversion Manag. 183(February):803–15. https://doi.org/10.1016/j.enconman.2018.11.032
Jang, J., Kang, Y., Han, J.H., Jang, K., Kim, C.M., Kim, I.S., 2020. Developments and Future Prospects of Reverse Electrodialysis for Salinity Gradient Power Generation: Influence of Ion Exchange Membranes and Electrodes. Desalination 491:11454. https://doi.org/10.1016/j.desal.2020.114540
Ju, J., Choi, Y., Lee, S., Park, C.G., Hwang, T., Jung, N., 2022. Comparison of Pretreatment Methods for Salinity Gradient Power Generation Using Reverse Electrodialysis (RED) Systems. Membranes 12(4): 372.  https://doi.org/10.3390/membranes12040372
Khatibi, M., Sadeghi, A., Ashrafizadeh, S.N., 2021. Tripling the Reverse Electrodialysis Power Generation in Conical Nanochannels Utilizing Soft Surfaces. Physical Chem. Chem. Physics 23(3):2211–21. https://doi.org/10.1039/D0CP05974A
Kim, D., Kwon, K., Kim, D.H., Li L., 2019. Nanofluidic RED. Springer Briefs Appl. Sci. Technol. 43–44. https://doi.org/10.1007/978-981-13-0314-2_6/COVER
Kim, Y., Wang, Y., France-Lanord, A., Wang, Y., Mason Wu, Y.C., Lin, S., Li, Y., Grossman, J.C., Swager, T.M., 2019. Ionic Highways from Covalent Assembly in Highly Conducting and Stable Anion Exchange Membrane Fuel Cells. J. American Chem. Soc. 141(45):18152–59. https://doi.org/10.1021/jacs.9b08749
Kingsbury, R.S., Chu, K., Coronell, O., 2015. Energy Storage by Reversible Electrodialysis: The Concentration Battery. J. Membr. Sci. 495:502–16. https://doi.org/10.1016/j.memsci.2015.06.050
Kotoka, F., Merino-Garcia, I., Velizarov, S., 2020. Surface Modifications of Anion Exchange Membranes for an Improved Reverse Electrodialysis Process Performance: A Review. Membranes 2020, 10, 160 10(8):160. https://doi.org/10.3390/MEMBRANES10080160
Kozmai, A., Porozhnyy, M., Ruleva, V., Gorobchenko, A., Pismenskaya, N., Nikonenko, V., 2023. Is It Possible to Prepare a ‘Super’ Anion-Exchange Membrane by a Polypyrrole-Based Modification? Membranes 13(1). https://doi.org/10.3390/membranes13010103
Lee, B., Wang, L., Wang, Z., 2023. Directing the research agenda on water and energy technologies with process and economic analysis. Energy Environ. Sci. 16: 714-722. https://doi.org/10.1039/d2ee03271f
Lee, S.W., Kim, H.J., Kim, D.K. 2016. Power Generation from Concentration Gradient by Reverse Electrodialysis in Dense Silica Membranes for Microfluidic and Nanofluidic Systems. Energies 9(1). https://doi.org/10.3390/en9010049
Liu, X., He M., Calvani D., Qi, H., Sai Sankar Gupta, K.B., de Groot, H.J.M., Agur Sevink, G.J., Buda, F., Kaiser, U., Schneider, G.F., 2020. Power Generation by Reverse Electrodialysis in a Single-Layer Nanoporous Membrane Made from Core–Rim Polycyclic Aromatic Hydrocarbons. Nature Nanotechnol. 15(4):307–12. https://doi.org/10.1038/s41565-020-0641-5
Mehdizadeh, S., Yasukawa, M., Abo, T., Kakihana, Y., Higa, M., 2019. Effect of Spacer Geometry on Membrane and Solution Compartment Resistances in Reverse Electrodialysis. J. Membr. Sci. 572:271–80. https://doi.org/10.1016/j.memsci.2018.09.051
Mei, Y., Tang, C.Y., 2018. Recent Developments and Future Perspectives of Reverse Electrodialysis Technology: A Review. Desalination 425:156–74. https://doi.org/10.1016/j.desal.2017.10.021
Moreno, J., Saakes, V.D.M., Nijmeijer, K., 2018. Mitigation of the Effects of Multivalent Ion Transport in Reverse Electrodialysis. J. Membr. Sci. 550:155–62. https://doi.org/10.1016/j.memsci.2017.12.069
Moreno, J., Grasman, S., Van Engelen, R., Nijmeijer, K., 2018. Upscaling Reverse Electrodialysis. Environ. Sci. Technol. 52(18):10856–63. https://doi.org/10.1021/acs.est.8b01886
Pawlowski, S., Crespo, J.G., Velizarov, S., 2014. Pressure Drop in Reverse Electrodialysis: Experimental and Modeling Studies for Stacks with Variable Number of Cell Pairs. J. Membr. Sci. 462:96–111. https://doi.org/10.1016/J.MEMSCI.2014.03.020
Pawlowski, S., Crespo, J.G., Velizarov, S., 2019. Profiled Ion Exchange Membranes: A Comprehensible Review. Int. J. Molecular Sci. 20(1). https://doi.org/10.3390/ijms20010165
Post, J.W., Goeting, C.H., Valk, J., Goinga, S., Veerman, J., Hamelers, H.V.M., Hack, P.J.F.M., 2010. Towards Implementation of Reverse Electrodialysis for Power Generation from Salinity Gradients. Desal. Water Treat. 16(1–3):182–93. https://doi.org/10.5004/dwt.2010.1093
Post, J.W., Veerman, J., Hamelers, H.V.M., Euverink, G.J.W., Metz, S.J., Nymeijer, K., Buisman, C.J.N., 2007. Salinity-Gradient Power: Evaluation of Pressure-Retarded Osmosis and Reverse Electrodialysis. J. Membr. Sci. 288(1–2):218–30. https://doi.org/10.1016/J.MEMSCI.2006.11.018
Pattle, R., 1954. NATU RE October 2, 1954. Nature 174(1953). https://doi.org/10.1038/174660a0
Rahman, M., 2023. Membranes for Osmotic Power Generation by Reverse Electrodialysis. Membranes 13(2), 164. https://doi.org/10.3390/membranes13020164
Santoro, S., Tufa, R.A., Avci, A.H., Fontananova, E., Di Profio, G., Curcio, E., 2021. Fouling Propensity in Reverse Electrodialysis Operated with Hypersaline Brine. Energy 228:120563. https://doi.org/10.1016/j.energy.2021.120563
Shahzad, M.W., Burhan, M., Ang, L., Choon Ng, K., 2017. Energy-Water-Environment Nexus Underpinning Future Desalination Sustainability. Desalination 413:52–64. https://doi.org/10.1016/j.desal.2017.03.009
Simões, C., Pintossi, D., Saakes, M., Borneman, Z., Brilman, W., Nijmeijer, K., 2020. Electrode Segmentation in Reverse Electrodialysis: Improved Power and Energy Efficiency. Desalination 492:114604. https://doi.org/10.1016/J.DESAL.2020.114604
Simões, C., Saakes, M., Brilman, D., 2022. Toward Redox-Free Reverse Electrodialysis with Carbon-Based Slurry Electrodes. Ind. Eng. Chem. Res. https://doi.org/10.1021/acs.iecr.2c03567
Simões, C., Vital, B., Sleutels, T., Saakes, M., Brilman, W., 2022. Scaled-up Multistage Reverse Electrodialysis Pilot Study with Natural Waters. Chem. Eng. J. 450(April). https://doi.org/10.1016/j.cej.2022.138412
Smolinska-Kempisty, K., Siekierka, A., Bryjak, M., 2020. Interpolymer Ion Exchange Membranes for CapMix Process. Desalination 482:114384. https://doi.org/10.1016/J.DESAL.2020.114384
Song, H., Choi, I., 2022. Unveiling the Adsorption Mechanism of Organic Foulants on Anion Exchange Membrane in Reverse Electrodialysis Using Electrochemical Methods. J. Appl. Electrochem. (0123456789). https://doi.org/10.1007/s10800-022-01816-5
Susanto, H., Fitrianingtyas, M., Nyoman Widiasa, I., Istirokhatun, T., Fahni, Y., Abdurahman, A.U., 2023. The Role of Membrane, Feed Characteristic and Process Parameters on RED Power Generation. Int. J. Renew. Energy Develop. 12(1):203–8. https://doi.org/10.14710/ijred.2023.49775
Tian, H., Wang, Y., Pei, Y., Crittenden, J.C., 2020. Unique Applications and Improvements of Reverse Electrodialysis: A Review and Outlook. Appl. Energy 262:114482. https://doi.org/10.1016/j.apenergy.2019.114482
Tsai, T.C., Liu, C.W., Yang, R.J., 2016. Power Generation by Reverse Electrodialysis in a Microfluidic Device with a Nafion Ion-Selective Membrane. Micromachines 7(11). https://doi.org/10.3390/mi7110205
Veerman, J., 2020. Reverse Electrodialysis: Co-and Counterflow Optimization of Multistage Configurations for Maximum Energy Efficiency. Membranes 10(9):1–13. https://doi.org/10.3390/membranes10090206
Vermaas, D.A., Kunteng, D., Veerman, J., Saakes, M., Nijmeijer, K., 2014. Periodic Feedwater Reversal and Air Sparging as Antifouling Strategies in Reverse Electrodialysis. Environ. Sci. Technol. 48(5):3065–73. https://doi.org/10.1021/es4045456
Vermaas, D.A., Saakes, M., Nijmeijer, K., 2014. Enhanced Mixing in the Diffusive Boundary Layer for Energy Generation in Reverse Electrodialysis. J. Membr. Sci. 453:312–19. https://doi.org/10.1016/j.memsci.2013.11.005
Vital, B., Torres, E.V., Sleutels, T., Cristina Gagliano, M., Saakes, M., Hamelers, H.V.M., 2021. Fouling Fractionation in Reverse Electrodialysis with Natural Feed Waters Demonstrates Dual Media Rapid Filtration as an Effective Pre-Treatment for Fresh Water. Desalination 518(July). https://doi.org/10.1016/j.desal.2021.115277
Wick, G.L., 1978. Power from Salinity Gradients. Energy 3(1):95–100. https://doi.org/10.1016/0360-5442(78)90059-2
Xu, Sh., Leng, Q., Wu, X., Xu, Z., Hu, J., Wu, D., Jing, D., Wang, P., Dong, F., 2021. Influence of Output Current on Decolorization Efficiency of Azo Dye Wastewater by a Series System with Multi-Stage Reverse Electrodialysis Reactors. Energy Conver. Manag. 228(July 2020). https://doi.org/10.1016/j.enconman.2020.113639
Yang, B., Cunman, Z., 2023. Progress in Constructing High-Performance Anion Exchange Membrane: Molecular Design, Microphase Controllability and In-Device Property. Chem. Eng. J. 457(October 2022):141094. https://doi.org/10.1016/j.cej.2022.141094
Yang, S.C., Kim, W.S., Choi, J., Choi, Y.W., Jeong, N., Kim, H., Nam, J.Y., Jeong, H., Kim, Y.H., 2019. Fabrication of Photocured Anion-Exchange Membranes Using Water-Soluble Siloxane Resins as Cross-Linking Agents and Their Application in Reverse Electrodialysis. J. Membr. Sci. 573:544–53. https://doi.org/10.1016/J.MEMSCI.2018.12.034
Yip, N.Y., Tiraferri, A., Phillip, W.A., Schiffman, J.D., Hoover, L.A., Kim, Y.C., Elimelech, M., 2011. Thin-Film Composite Pressure Retarded Osmosis Membranes for Sustainable Power Generation from Salinity Gradients. Environ. Sci. Technol. 45(10):4360–69. https://doi.org/10.1021/es104325z
Zhang, Y., Wu, X., Xu, Sh., Leng, Q., Wang, S., 2022. A Serial System of Multi-Stage Reverse Electrodialysis Stacks for Hydrogen Production. Energy Conver. Manag. 251(2). https://doi.org/10.1016/j.enconman.2021.114932
Zhang, Z., Wen, L., Jiang, L., 2021. Nanofluidics for Osmotic Energy Conversion. Nature Rev. Mater. 6(7):622–39. https://doi.org/10.1038/s41578-021-00300-4