Artificial Intelligence Application in Membrane Processes and Prediction of Fouling for Better Resource Recovery

Document Type : Research Article


1 American University of Sharjah

2 Sustainable and Renewable Energy Engineering Department, University of Sharjah


Water contamination is a global issue due to the emergence of new contaminants from solvents, personal care products, and pharmaceutical compounds. Membrane processes appear to be effective and promising in water treatment. While membrane processes can significantly reduce the levels of contaminants, problems continue to arise, such as fouling. The utilization of artificial intelligence (AI) to predict fouling and enhance the characteristics of membranes is currently receiving attention. Various artificial intelligence (AI) models can be employed to optimize the input parameters based on the output, which helps in predicting membrane performance and assessing its ability to reject contaminants effectively. The possibilities for improvement in membrane technologies and filtration processes using AI techniques are discussed in this paper. Membrane fouling causes significant issues during the operation due to the accumulation of impurities onto the membrane, which reduces the membrane’s ability to function properly. AI algorithms can be used to predict permeate flux and fouling growth properties. The paper concludes that AI utilization for the prediction of membrane fouling can enhance the membrane selection for the processes, reduce costs with better fouling control system development and make the process more scalable on an industrial scale. The literature showed that there are models, such as the Neural-fuzzy interference system, that can predict forward osmosis membranes’ performance with a high correlation of 0.997 and a root mean square error of 0.04. The paper also concludes that the exploration of more novel deep learning architectures like GANs would facilitate better resource recovery from wastewater and improved prediction of fouling in membrane processes.

Graphical Abstract

Artificial Intelligence Application in Membrane Processes and Prediction of Fouling for Better Resource Recovery


Ø Membrane processes are effective in the removal of emerging contaminants.

Ø Membrane processes pose a challenge during operation because of fouling.

Ø Various AI models can be employed to optimize and predict fouling.



Main Subjects

Abuwatfa, W. H., Al-Muqbel, D., Al-Othman, A., Halalsheh, N., & Tawalbeh, M., 2021. Insights into the removal of microplastics from water using biochar in the era of COVID-19: A mini review. Case Studies Chem. Environ. Eng. 4, 100151.
Al Sharabati, M., Abokwiek, R., Al-Othman, A., Tawalbeh, M., Karaman, C., Orooji, Y., & Karimi, F., 2021. Biodegradable polymers and their nano-composites for the removal of endocrine-disrupting chemicals (EDCs) from wastewater: A review. Environ. Res. 202, 111694.
Alam, G., Ihsanullah, I., Naushad, Mu., & Sillanpää, M., 2022. Applications of artificial intelligence in water treatment for optimization and automation of adsorption processes: Recent advances and prospects. Chem. Eng. J. 427, 130011.
Al-Bsoul, A., Al-Shannag, M., Tawalbeh, M., Al-Taani, A. A., Lafi, W. K., Al-Othman, A., & Alsheyab, M. (2020). Optimal conditions for olive mill wastewater treatment using ultrasound and advanced oxidation processes. Sci. The Total Environ. 700, 134576.
Ali, A.M., Rønning, H.T., Alarif, W., Kallenborn, R., Al-Lihaibi, S.S., 2017. Occurrence of pharmaceuticals and personal care products in effluent-dominated Saudi Arabian coastal waters of the Red Sea. Chemosphere 175, 505–513.
Alonso, J.J. S., El Kori, N., Melián-Martel, N., Del Río-Gamero, B., 2018. Removal of ciprofloxacin from seawater by reverse osmosis. J. Environ. Manag. 217, 337–345.
Al-Othman, A., Tawalbeh, M., Martis, R., Dhou, S., Orhan, M., Qasim, M., Ghani Olabi, A., 2022. Artificial intelligence and numerical models in hybrid renewable energy systems with fuel cells: Advances and prospects. Energy Conver. Manag. 253, 115154.
Al-Qodah, Z., Tawalbeh, M., Al-Shannag, M., Al-Anber, Z., Bani-Melhem, K., 2020. Combined electrocoagulation processes as a novel approach for enhanced pollutants removal: A state-of-the-art review. Sci. The Total Environ. 744, 140806.
Al-Rajab, A.J., Al Bratty, M., Hakami, O., Alhazmi, H.A., Sharma, M., Reddy, D.N., 2019. Investigation of the presence of pharmaceuticals and personal care products (PPCPs) in groundwater of Jazan area, Saudi Arabia. Tropical J. Pharma. Res. 17(10), 2061.
Arefi-Oskoui, S., Khataee, A., Vatanpour, V., 2017. Modeling and Optimization of NLDH/PVDF Ultrafiltration Nanocomposite Membrane Using Artificial Neural Network-Genetic Algorithm Hybrid. ACS Combin. Sci. 19(7), 464–477.
Badrnezhad, R., Mirza, B., 2014. Modeling and optimization of cross-flow ultrafiltration using hybrid neural network-genetic algorithm approach. J. Ind. Eng. Chem. 20(2), 528–543.
Bhattacharya, P., Mukherjee, D., Dey, S., Ghosh, S., Banerjee, S., 2019. Development and performance evaluation of a novel CuO/TiO2 ceramic ultrafiltration membrane for ciprofloxacin removal. Mater. Chem. Phys. 229, 106–116.
Cabrera, P., Carta, J.A., González, J., Melián, G., 2017. Artificial neural networks applied to manage the variable operation of a simple seawater reverse osmosis plant. Desalination 416, 140–156.
Cevallos-Mendoza, J., Amorim, C.G., Rodríguez-Díaz, J.M., Montenegro, M. da C. B. S. M.,2022. Removal of Contaminants from Water by Membrane Filtration: A Review. Membranes 12(6), 570.
Chew, C.M., Aroua, M.K., Hussain, M.A., 2017. A practical hybrid modelling approach for the prediction of potential fouling parameters in ultrafiltration membrane water treatment plant. J. Ind. Eng. Chem. 45, 145–155.
Dogan E., 2016. Investigation of ciprofloxacin removal from aqueous solution by nanofiltration process. Global NEST J. 18(2), 291–308.
Egea-Corbacho Lopera, A., Gutiérrez Ruiz, S., Quiroga Alonso, J.M., 2019. Removal of emerging contaminants from wastewater using reverse osmosis for its subsequent reuse: Pilot plant. J. Water Proc. Eng. 29, 100800.
Gaya, M.S., Abba, S.I., Abdu, A.M., Tukur, A.I., Saleh, M.A., Esmaili, P., Wahab, N.A., 2020. Estimation of water quality index using artificial intelligence approaches and multi-linear regression. IAES Int. J. Artificial Intelligence (IJ-AI), 9(1), 126.
Guest, J.S., Skerlos, S.J., Barnard, J.L., Beck, M.B., Daigger, G.T., Hilger, H., Jackson, S.J., Karvazy, K., Kelly, L., Macpherson, L., Mihelcic, J.R., Pramanik, A., Raskin, L., Van Loosdrecht, M.C.M., Yeh, D., & Love, N.G., 2009. A New Planning and Design Paradigm to Achieve Sustainable Resource Recovery from Wastewater. Environ. Sci. Tech. 43(16), 6126–6130.
Gupta, V.K., Ali, I., 2013. Water Treatment by Membrane Filtration Techniques. in: Environ. Water (pp. 135–154). Elsevier.
Heger, M., Vashold, L., Palacios, A., Alahmadi, M., Bromhead, M.A., Acerbi, M., 2022. Blue Skies, Blue Seas: Air Pollution, Marine Plastics, and Coastal Erosion in the Middle East and North Africa. The World Bank.
Holdich, R., Dragosavac, M., Williams, B., Trotter, S., 2020. High throughput membrane emulsification using a single‐pass annular flow crossflow membrane. AIChE J. 66(6).
Holloway, R.W., Wait, A.S., Fernandes da Silva, A., Herron, J., Schutter, M.D., Lampi, K., Cath, T.Y., 2015. Long-term pilot scale investigation of novel hybrid ultrafiltration-osmotic membrane bioreactors. Desalination 363, 64–74.
Hu, J., Kim, C., Halasz, P., Kim, J.F., Kim, J., Szekely, G., 2021. Artificial intelligence for performance prediction of organic solvent nanofiltration membranes. J. Membr. Sci. 619, 118513.
Kacprzyńska-Gołacka, J., Łożyńska, M., Barszcz, W., Sowa, S., Wieciński, P., Woskowicz, E., 2020. Microfiltration Membranes Modified with Composition of Titanium Oxide and Silver Oxide by Magnetron Sputtering. Polymers 13(1), 141.
Khan, S., Naushad, Mu., Govarthanan, M., Iqbal, J., Alfadul, S.M., 2022. Emerging contaminants of high concern for the environment: Current trends and future research. Environ. Res. 207, 112609.
Khaouane, L., Ammi, Y., Hanini, S., 2017. Modeling the Retention of Organic Compounds by Nanofiltration and Reverse Osmosis Membranes Using Bootstrap Aggregated Neural Networks. Arabian J. Sci. Eng. 42(4), 1443–1453.
Kisi, O., Alizamir, M., Docheshmeh Gorgij, A., 2020. Dissolved oxygen prediction using a new ensemble method. Environ. Sci. Pollution Res. 27(9), 9589–9603.
Lin, W., Jing, L., Zhu, Z., Cai, Q., Zhang, B., 2017. Removal of Heavy Metals from Mining Wastewater by Micellar-Enhanced Ultrafiltration (MEUF): Experimental Investigation and Monte Carlo-Based Artificial Neural Network Modeling. Water, Air, & Soil Pollution, 228(6), 206.
Liu, L., Luo, X.B., Ding, L., Luo, S.L., 2019. Application of Nanotechnology in the Removal of Heavy Metal From Water. in: Nanomaterials for the Removal of Pollutants and Resource Reutilization (pp. 83–147). Elsevier.
Modak, S., Mokarizadeh, H., Karbassiyazdi, E., Hosseinzadeh, A., Esfahani, M.R., 2022. The AI-assisted removal and sensor-based detection of contaminants in the aquatic environment. in: Artificial Intelligence and Data Science in Environmental Sensing (pp. 211–244). Elsevier.
Niu, C., Li, X., Dai, R., Wang, Z., 2022. Artificial intelligence-incorporated membrane fouling prediction for membrane-based processes in the past 20 years: A critical review. Water Res. 216, 118299.
Nourani, V., Asghari, P., Sharghi, E., 2021. Artificial intelligence based ensemble modeling of wastewater treatment plant using jittered data. J. Cleaner Produc. 291, 125772.
Nur Adli Zakaria, M., Abdul Malek, M., Zolkepli, M., Najah Ahmed, A., 2021. Application of artificial intelligence algorithms for hourly river level forecast: A case study of Muda River, Malaysia. Alexandria Eng. J. 60(4), 4015–4028.
Ouda, M., Kadadou, D., Swaidan, B., Al-Othman, A., Al-Asheh, S., Banat, F., Hasan, S.W., 2021. Emerging contaminants in the water bodies of the Middle East and North Africa (MENA): A critical review. Sci. The Total Environ. 754, 142177.
Park, H.B., Kamcev, J., Robeson, L.M., Elimelech, M., Freeman, B.D., 2017. Maximizing the right stuff: The trade-off between membrane permeability and selectivity. Science 356(6343).
Park, S., Baek, S.-S., Pyo, J., Pachepsky, Y., Park, J., Cho, K.H., 2019. Deep neural networks for modeling fouling growth and flux decline during NF/RO membrane filtration. J. Membr. Sci. 587, 117164.
Peleato, N.M., Legge, R.L., Andrews, R.C., 2017. Continuous Organic Characterization for Biological and Membrane Filter Performance Monitoring. J.  American Water Works Assoc. 109, E86–E98.
Pham, T.D., Vu, T.N., Nguyen, H.L., Le, P.H. P., Hoang, T.S., 2020. Adsorptive Removal of Antibiotic Ciprofloxacin from Aqueous Solution Using Protein-Modified Nanosilica. Polymers 12(1), 57.
Colston, R., Tait, S., Vaneeckhaute, C., Cruz, H., Pikaar, I., Seviour, T., Klok, J.B.M., Weijma, J., Dijkman, H., Buisman, C.J.N., Scattergood, S., Robles-Aguilar, A.A., Meers, E., Béline, F., Soares, A., Nutrient recovery from water and wastewater. Chapter 10, Resour. Recover. from Water Princ. Appl., (I. Pikaar, J. Guest, R. Ganigué, P. Jensen, K. Rabaey, T. Seviour, J. Trimmer, O. van der Kolk, C. Vaneeckhaute, W. Verstraete, Eds.) IWA Publishing; 245-293, 2022.
Qalyoubi, L., Al-Othman, A., Al-Asheh, S., 2021. Recent progress and challenges on adsorptive membranes for the removal of pollutants from wastewater. Part I: Fundamentals and classification of membranes. Case Studies Chem. Environ. Eng. 3, 100086.
Qalyoubi, L., Al-Othman, A., Al-Asheh, S., 2022. Removal of ciprofloxacin antibiotic pollutants from wastewater using nano-composite adsorptive membranes. Environ. Res. 215, 114182.
Qasim, M., Badrelzaman, M., Darwish, N.N., Darwish, N.A., Hilal, N., 2019. Reverse osmosis desalination: A state-of-the-art review. Desalination 459, 59–104.
Qiu, G., Law, Y.-M., Das, S., Ting, Y.-P., 2015. Direct and Complete Phosphorus Recovery from Municipal Wastewater Using a Hybrid Microfiltration-Forward Osmosis Membrane Bioreactor Process with Seawater Brine as Draw Solution. Environ. Sci. Tech. 49(10), 6156–6163.
Qiu, G., Ting, Y.-P., 2014. Direct phosphorus recovery from municipal wastewater via osmotic membrane bioreactor (OMBR) for wastewater treatment. Bioresource Tech. 170, 221–229.
Roehl, E.A., Ladner, D.A., Daamen, R.C., Cook, J.B., Safarik, J., Phipps, D.W., Xie, P., 2018. Modeling fouling in a large RO system with artificial neural networks. J. Membr. Sci. 552, 95–106.
Saleh, T.A., Gupta, V.K.,2016. An Overview of Membrane Science and Technology. in: Nanomaterial and Polymer Membranes (pp. 1–23). Elsevier.
Sarkar, B., Mandal, S., Tsang, Y.F., Vithanage, M., Biswas, J.K., Yi, H., Dou, X., Ok, Y.S., 2019. Sustainable sludge management by removing emerging contaminants from urban wastewater using carbon nanotubes. in: Ind. Municipal Sludge (pp. 553–571). Elsevier.
Schwaller, C., Hoffmann, G., Hiller, C.X., Helmreich, B., Drewes, J.E., 2021. Inline dosing of powdered activated carbon and coagulant prior to ultrafiltration at pilot-scale – Effects on trace organic chemical removal and operational stability. Chem. Eng. J. 414, 128801.
Shams Jalbani, N., Solangi, A.R., Memon, S., Junejo, R., Ali Bhatti, A., Lütfi Yola, M., Tawalbeh, M., Karimi-Maleh, H., 2021. Synthesis of new functionalized Calix[4]arene modified silica resin for the adsorption of metal ions: Equilibrium, thermodynamic and kinetic modeling studies. J. Molecular Liquids, 339, 116741.
Sheng, A.L.K., Bilad, M.R., Osman, N.B., Arahman, N., 2017. Sequencing batch membrane photobioreactor for real secondary effluent polishing using native microalgae: Process performance and full-scale projection. J. Cleaner Produc. 168, 708–715.
Shim, J., Park, S., Cho, K.H., 2021. Deep learning model for simulating influence of natural organic matter in nanofiltration. Water Res. 197, 117070.
Tawalbeh, M., Al Mojjly, A., Al-Othman, A., Hilal, N., 2018. Membrane separation as a pre-treatment process for oily saline water. Desalination 447, 182–202.
Tawalbeh, M., Qalyoubi, L., Al-Othman, A., Qasim, M., Shirazi, M., 2023. Insights on the development of enhanced antifouling reverse osmosis membranes: Industrial applications and challenges. Desalination 553, 116460.
Toczyłowska-Mamińska, R., Mamiński, M.Ł., 2022. Wastewater as a Renewable Energy Source—Utilisation of Microbial Fuel Cell Technology. Energies 15(19), 6928.
Viet, N.D., Jang, A., 2023. Comparative mathematical and data-driven models for simulating the performance of forward osmosis membrane under different draw solutions. Desalination 549, 116346.
Wang, X., Li, B., Zhang, T., Li, X., 2015. Performance of nanofiltration membrane in rejecting trace organic compounds: Experiment and model prediction. Desalination 370, 7–16.
Ye, Y., Ngo, H.H., Guo, W., Chang, S.W., Nguyen, D.D., Zhang, X., Zhang, J., Liang, S., 2020. Nutrient recovery from wastewater: From technology to economy. Bioresource Technol. Reports, 11, 100425.
Yousefi, M., Gholami, M., Oskoei, V., Mohammadi, A.A., Baziar, M., Esrafili, A., 2021. Comparison of LSSVM and RSM in simulating the removal of ciprofloxacin from aqueous solutions using magnetization of functionalized multi-walled carbon nanotubes: Process optimization using GA and RSM techniques. J.  Environ. Chem. Eng. 9(4), 105677.
Zahid, M., Rashid, A., Akram, S., Rehan, Z.A., & Razzaq, W., 2018. A Comprehensive Review on Polymeric Nano-Composite Membranes for Water Treatment. J. Membr. Sci. Tech. 08(01).
Zarei, M., 2020. Wastewater resources management for energy recovery from circular economy perspective. Water-Energy Nexus 3, 170–185.
Zhao, L., Dai, T., Qiao, Z., Sun, P., Hao, J., Yang, Y., 2020. Application of artificial intelligence to wastewater treatment: A bibliometric analysis and systematic review of technology, economy, management, and wastewater reuse. Proc. Safety Environ.  Protec. 133, 169–182.